

General Catalogue

General Catalogue

Linking the Future

As the worldwide leader in the cable industry, Prysmian Group believes in the effective, efficient and sustainable supply of energy and information as a primary driver in the development of communities.

With this in mind, we provide major global organisations in many industries with best-in-class cable solutions, based on state-of-the-art technology.

Through two renowned commercial brands -Prysmian and Draka - based in almost 50 countries, we're constantly close to our customers, enabling them to further develop the world's energy and telecoms infrastructures, and achieve sustainable, profitable growth. In our energy business, we design, produce, distribute and install cables and systems for the transmission and distribution of power at low, medium, high and extra-high voltage.

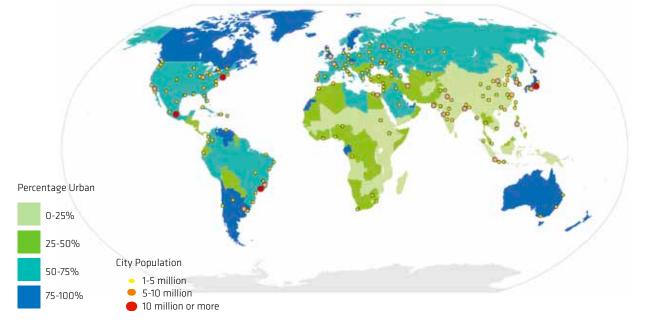
In telecoms, the Group is a leading manufacturer of all types of copper and fibre cables, systems and accessories - covering voice, video and data transmission.

Drawing on over 130 years' experience and continuously investing in R&D, we apply excellence, understanding and integrity to everything we do, meeting and exceeding the precise needs of our customers across all continents, at the same time shaping the evolution of our industry.

What links global expertise to the wheels of industry?

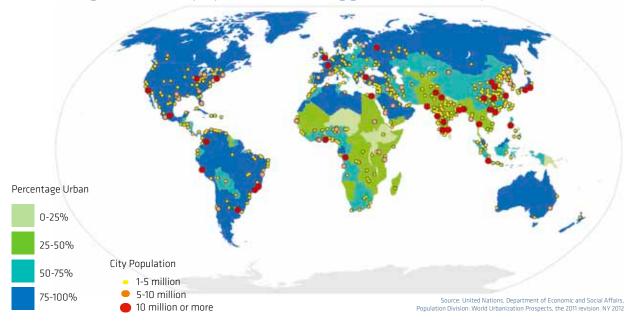
High-performing cable solutions to keep the wheels of industry turning

On every continent, in applications that range from rolling stock and vehicles for high-speed trains and urban mass transit lines, to all types of rail transport infrastructure, Prysmian's specialist cable solutions sit at the heart of significant international projects; supporting the work of major customers, with high-performing, durable and safe technology. As the world leader in cabling, we draw on global expertise and local presence to work in close proximity with our customers, delivering products and service platforms built on easy contact, bespoke solutions and effective supply chain, meeting their specialised requirements, to help them drive the wheels of industry and achieve sustainable growth and profitability.


History of the railways

When George Stephenson's steam locomotive "The Rocket" emerged as the winner of the ,Rainhill Race' in 1829, with an average speed of 12.5 mph = 20 km/h, no one could predict the triumphant progress the railways would make in the almost 200 year period that followed. Within just a few decades, the railway developed into a broadly integrated transport system, which drastically reduced travelling times, and made it possible to develop travel, especially in the New World - within that huge country of America. The triumph of the railways, which began around the year 1830 with a distance of about 330 km of railway line, developed over the next fifty years almost exponentially to become almost 370,000 km. Today, this extends to over more than 1.1 million km!

With the advent of civil aviation, the railway lost its role as the main means of transport for middle and long distances and has long been regarded as an outdated, slow and uncomfortable means of transportation. But in recent years, the railway has experienced a revival. With the introduction of electronic interlocking technology and agreement (for the time being) on a European system for the management and control of railway transport (ERTMS - European rail traffic management system), the railway is once again able to assume an important role in the transport infrastructure especially over medium distances. Thanks to a variety of European, internationally operating system providers in the field of interlocking technology, the originally European system ERTMS has been experiencing an explosive worldwide spread over the past few years.


Urbanisation

A major challenge for the railways as a means of mass transport, which is also an unparalleled opportunity, is represented by the increasing urbanisation of the world's population. In 2013, approximately 51% of almost 7 billion people lived on our planet in an urban environment. By 2050, not only will the world's population have increased to approximately 9 billion people, but the proportion of citizens living in cities will have grown to about 70%. Thus, some 6.3 billion people will reside every day in large cities and be on the move. Car-bound private transport is thus destined to collapse and a changeover to rail-based transportation is therefore without rival. Tram and metro systems, regional trains and light rail vehicles will interconnect the cities into lowemission zones. Megacities are already in planning, such as the Chinese project "Turn The Pearl Delta Into One", in which nine cities with a total of 42 million people are to be merged into a single city. The most modern railway systems will form the backbone of this metropolis. A total of 29 lines with a network of altogether 1500 km will supply the region and allow transit times of maximum one hour from one end of town to the other.

Percentage of urban population and agglomerations by size, class 1980

Percentage of urban population and agglomerations by size, class 2025

Development of technology

The safety requirements for the technology behind the visible rail are extraordinary and similar to that in aviation and aerospace. Rail vehicles cannot leave their track in case of imminent collision by opposing traffic on the same track. Single-track lines are frequently used in both directions to increase traffic volume. A continuous monitor providing permanent communication between the train driver's cab and the railway control center is essential for a railway line to be used safely.

This is where different technologies may intervene, which in the past were brought about by regional, country-specific developments. In Europe, there were and still are a number of train control technologies that work well in themselves, however, lead to considerable additional costs when it comes to cross-border traffic. Locomotives have more than one train control system installed these days, in order to be able to safely participate in railway traffic in neighbouring countries, without the need to change locomotives.

To clearly reduce the number of systems in the future, research was already started in the 80s on behalf of the International Union of Railways (UIC) and the European Rail Research Institute (ERRI), to develop a uniform operational management approach for railways across Europe. In April 2000, the guidelines for adopting a functional specification were decided under the name ERTMS (European Rail Traffic Management System).

The ERTMS system mainly consists of the following components:

 ETCS (European Train Control System) as a train control system, which is intended to prevent a train entering an occupied sector, or running at too high a speed, using interlocking electronic control systems, with integrated train and trackside elements. GSM-R (Global System for Mobile Communications - Railway) as a mobile communications system to meet the needs of the railway with regard to data and voice communications between moving trains and fixed location facilities and designed to satisfy the highest safety standards.

ERTMS was specifically developed for the routes of Trans-European Networks (TEN) and is also intended to be mainly used there. As already mentioned, ERTMS is gaining worldwide attention and will also be increasingly used globally.

Now, there are not only inter-city trains, but also urban rail traffic. Underground railways, light rail and trams are popular and used in urban areas preferably as short-haul transportation systems. Also, in this case, electronics is becoming more important, in the form of CBTC (Communication Based Train Control).

The ideas behind ETCS and CBTC are similar:

- high safety-level in traffic and
- high traffic density.

CBTC goes even one step further and offers fully automated train operation. The train starts and stops automatically without a driver.

CBTC also complies with international standards, yet, the systems of each individual manufacturer are not freely replaceable. The implementation of CBTC is highly complex and significantly more expensive than ERTMS would be on comparable routes. However, CBTC is unbeatable when it comes to achieving the shortest possible intervals between trains. Intervals of 60-90 seconds between trains are possible. During the peak morning and evening periods, thousands of commuters can comfortably be transported and hence the streets can be relieved of congestion.

Prysmian and Draka have accompanied this development from the outset and today are able to offer a full range of cables for all applications in the railway sector.

TCEKPELE

6733

REAL STRAIG

SIGNAL

COLOR IN

STOR

ARAKA

CSZYEALABZYFRI 30KIKI,5 5

SKEKS SHIT

SIGNAL

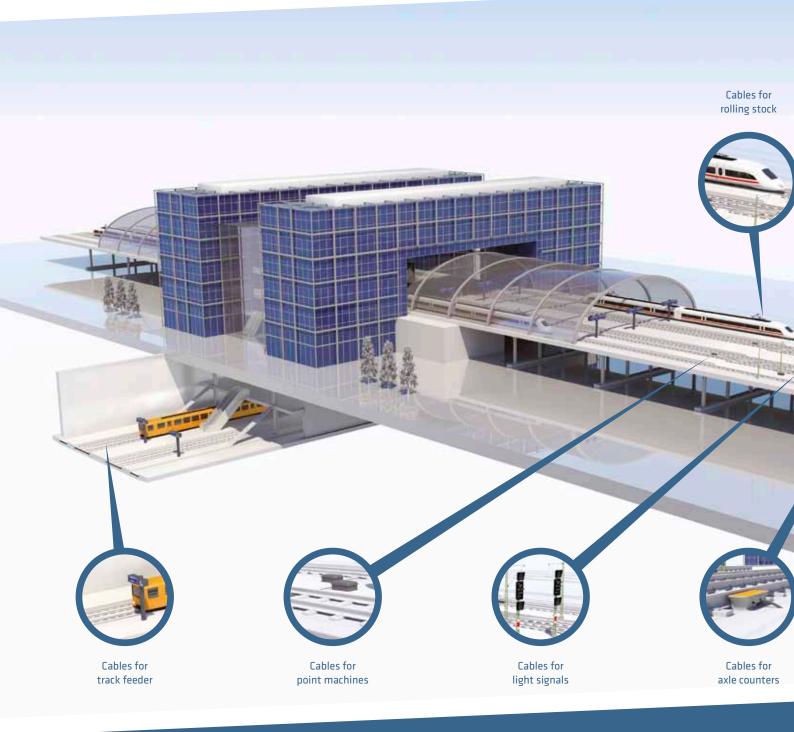
TE-2VE2YAE2Y

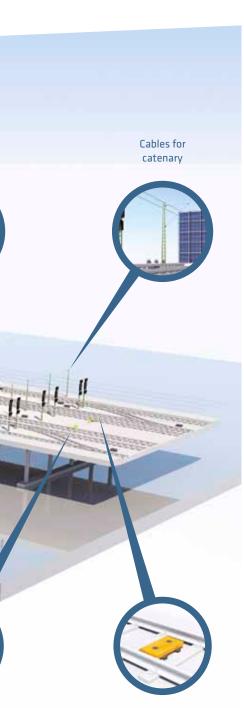
STATOTOR MADE & CONTRACT

ERQKATQAHYQ 7X1X1.5

127414140

Prysmian Group has the experience and the know-how to assist you and your projects worldwide.


Railway projects are unique!



Index

Cables for any application	page 10
Railway Cable Standards	page 12
VDE designation codes for cables	page 16
Explanation of symbols	page 17
Popular railway cable data sheets	page 19
Cables with reduction factor	page 76
Requirements for fire characteristics of cable installations in tunnels or stations	page 78
Fire testing	page 79
Construction Product Regulation	page 82
Transport and storage of cable drums	page 84
Important physical characteristics	page 85
Certifications and compliance	page 86
Our responsibilities	page 87
References	page 88

Cables for any application

In principle, applications in the inter-city, metro and/or local traffic transport sectors are the same: the power supply of the trains, earth cables, points machines, signal lights, axle counters and beacons, as well as wireless technology such as GSM-R or radio communication. For all of these applications cables are needed.

Power supply of trains

- AC or DC, continuous load
- High currents and tensions
- Large conductor cross-sections

Earthing

- High return current flows
- Medium conductor cross-sections

Point machines

- Only short-term power load, no continuous load, ≤ 380 V
- Small conductor cross-sections up to 2.5 mm² normally sufficient

Signal lights

- Continuous load, low tensions and currents, 24-48 V
- Small conductor cross-sections up to 2.5 mm² sufficient

Axle counters

- Hf requirements
- No continuous load
- Small conductor cross-sections up to 2.5 mm² are sufficient

Beacon cables

- Hf requirements
- No continuous load
- Small conductor cross-sections up to 2.5 mm² are sufficient as a rule

GSM-R/radio communication

- Data supply via fibre optic cables
- Use of radiating coaxial cables in tunnels
- Telecommunication and data cables

Cables for balises

Railway Cable Standards

Historically, a variety of national regulations and standards has evolved within Europe for cables used in railway infrastructures. The specifications of Deutsche Bahn (Germany), SNCF (France) and adif (Spain) are considered to be leading and globally more or less a quasi standard for certain applications and regions. Other countries such as Italy, Romania, Norway, England and many others maintain their own national standards.

Country	Operator	Standard	Cable type		
Germany	DB	PH 416.0113 v1.1	A-2Y2YB2Y n x 1 x 0.9/1.4/1.8 mm S (H115/H145)		
			AJ-2Y2YDB2Y n x 1 x 0.9/1.4/1,8 mm S (H115/145)		
		PH 416.0113 v2.1	A-2YOF(L)2YB2Y n x 1 x 0.9/1.4/1.8 mm S (H115/H145)		
			AJ-2YOF(L)2YDB2Y n x 1 x 0.9/1.4/1,8 mm S (H115/145)		
		PH 416.0114 v2.1	A-2YOF(L)2YB2Y n x 1 x 1.4/1.8 mm S (H95)		
			AJ-2YOF(L)2YDB2Y n x 1 x 1.4/1,8 mm S (H95)		
		PH 416.0115 v1.1	A-2Y(L)2YB2Y n x 4 x 0.9/1.4 mm S (H45)		
			AJ-2Y(L)2YDB2Y n x 4 x 0.9/1.4 mm S (H45)		
		PH 416.113 v1.1 (based on)	A-HHBH n x 1 x 0.9/1.4/1.8 mm S (H115/H145)		
			A-H(L)HBH n x 1 x 0.9/1.4 mm S (H45)		
		PH 416.0120	A-2Y(L)2YB2Y1x4x1.4 / 1.53 mm Balise		
			AJ-2Y(L)2YDB2Y1x4x1.4 / 1.53 mm Balise		
		PH 416.0118	A-2Y(L)2Y2YV n x 4 x 0.9/1.4 mm + m x 1 x 0.9/1.4/1.8 mm combi cable		
			A-2Y(L)2YB2Y n x 4 x 0.9/1.4 mm + m x 1 x 0.9/1.4/1.8 mm combi cable		
			AJ-2Y(L)2YDB2Y n x 4 x 0.9/1.4 mm + m x 1 x 0.9/1.4/1.8 mm combi cable		
		Arcor TNP 02/05	AJ-02YSTF(L)2YDB2Y n x 4 x 0.9 / 1.4 mm STI LG		
Austria	ÖBB	ÖVE-K10	S-2Y2YBY n x 0.75 / 1.5 / 2.5 / 4 / 6 mm² RE		
			S-2Y2YB2Y n x 0.75 / 1.5 / 2.5 / 4 / 6 mm² RE		
			S-2Y2YCB2Y n x 1.5 / 2.5 / 4 mm² RE (J 0.65) HD		
			S-2Y2YBY n x 4 x 0.9 / 1.4 / 1.8 mm		
			S-2Y2YCBY n x 4 x 0.9 / 1.4 / 1.8 mm RE (J 0.65) HD		
Switzerland	SBB	I-PS 3001.82.1000	Sw-CLT n x 4 x 1.5 / 2.2 mm		
		I-AT-FS 3001.52.2000	PE-ALT-CLT 1 x 4 x 1.53 mm balise cable		
Hungary	MÁV	P-12440/2002	BRQKAtQAhVQ n x 1 x 1.5 mm / 2.5 mm		
		P-6014/2012 (TEBF amend. No. 3)	ERQ 1 x 4 x 1.53 mm		
		P-2518/2002 (P-3197/2008 amend.1)	HvrQ n x 4 x 0.8 mm		
		P-12440/2002 (P-3196/2008 amend.1, P-692/2011 amend.2)	JRQ n x 4 x 1.5 / 1.8 mm		

Prysmian has been offering cables and solutions for these standards and has been supplying many of these countries for many years.

The following overview provides an extract of the most common cables. Many other cable designs are available upon request.

Insulation material	Twisting	Watertightness	Moisture barrier sheath	Screen/ induction protection	Armour	Outer sheath material	Reduction factor
PE	cores	-	-	-	steel tape	PE	-
PE	cores	-	-	CU wires	steel tape	PE	yes
PE	cores	jelly filling	AL/PET-PE	-	steel tape	PE	-
PE	cores	jelly filling	AL/PET-PE	CU wires	steel tape	PE	yes
PE	cores	jelly filling	AL/PET-PE	-	steel tape	PE	-
PE	cores	jelly filling	AL/PET-PE	CU wires	steel tape	PE	yes
PE	quads	-	AL/PET-PE	-	steel tape	PE	-
PE	quads	-	AL/PET-PE	CU wires	steel tape	PE	yes
PE	cores	-	-	-	steel tape	LSZH-FR	-
PE	quads	-	AL/PET-PE	-	steel tape	LSZH-FR	-
PE	quads	-	AL/PET-PE	-	steel tape	PE	-
PE	quads	-	AL/PET-PE	CU wires	steel tape	PE	yes
PE	quads/cores	-	AL/PET-PE	-	-	PE	-
PE	quads/cores	-	AL/PET-PE	-	steel tape	PE	-
PE	quads/cores	-	AL/PET-PE	CU wires	steel tape	PE	yes
foam-skin-PE	quads	swellable yarns/fleeces	AL/PET-PE	CU wires	steel tape	PE	yes
PE	cores	-	-	-	steel tape	PVC	-
PE	cores	-	-	-	steel tape	PE	-
PE	cores	-	-	CU wires	steel tape	PE	yes
PE	quads	-	-	-	steel tape	PE	-
PE	quads	-	-	CU wires	steel tape	PE	yes
PE	quads	-	-	-	steel tape	PE	-
PE	quads	-	AL/PET-PE	-	steel tape	PE	-
PE	cores	-	AL/PET-PE	AL tape	steel tape	PE	yes
PE	quads	-	AL/PET-PE	-	steel tape	PE	-
foam-skin-PE	quads	jelly filling	AL/PET-PE	CU wires	-	PE	yes
PE	quads	-	-	CU wires	steel tape	PE	yes

Railway Cable Standards

Country	Operator	Standard	Cable type
Spain	adif/RENFE	E.T. 03.365.051.6	EAPSP n x 1 x 0.9/1.4 mm
			EAPSP n x 4 x 0.9/1.4 mm
			EAPSP-R n x 1 x 0.9/1.4 mm
			EAPSP-R n x 4 x 0.9/1.4 mm
			EATST n x 1 x 0.9/1.4 mm
			EATST n x 4 x 0.9/1.4 mm
			CCPSSP-FR0.3 n x 1 x 0.9/1.4 mm
			CCPSSP-FR0.1 n x 1 x 0.9/1.4 mm
			CCPSSP-FR0.3 n x 4 x 0.9/1.4 mm
			CCPSSP-FR0.1 n x 4 x 0.9/1.4 mm
			CCTSST-FR0.3 n x 1 x 0.9/1.4 mm
			CCTSST-FR0.1 n x 1 x 0.9/1.4 mm
			CCTSST-FR0.3 n x 4 x 0.9/1.4 mm
			CCTSST-FR0.1 n x 4 x 0.9/1.4 mm
France	SNCF	NF F 55-698 & CT445	ZPAU n x 2 x 1.0 mm ²
			ZPFU n x 2 x1.0 mm ²
			ZC03 4 x 4 x 1.0 mm ²
Belgium	Infrabel	S-21, I-I.313	SXCAV n x 2 x 1.5 mm²
Norway	Jernbaneverket		FTGS n x 4 x 0.9 / 1.4 mm
			FEBI n x 1.5 / 2.5 mm ²
Czech/Slovakia	ČD / ŽSR	TP31.30.13 KD-001/96	TCEKPFLEY n x 2 x 1.0 mm type "C" or "D"
			TCEKPFLEZE n x 2 x 1.0 mm type "C" or "D"
Romania	CFR/AFER	STAS 8779-86	CS2YAb2YFR1 n x 1 x 1.0 / 1.5 / 2.5 mm ²
			CS2YEAIAb2YFR1 n x 1 x 1.0 / 1.5 / 2.5 mm ²
Turkey	TCDD	PYSEK-R	AJ-2Y2Y(St)2YB2Y-FR0.3 n x 1 x 0.9 mm / 1.4 mm
			AJ-2Y2Y(St)2YB2Y-FR0.3 n x 4 x 0.9 mm / 1.4 mm
			AJ-02YS2YD2YB2Y-FR0.1 n x 4 x 0.9 mm
Italy	RFI	STF DTCSTSSTB SF IS 06 200	UG70G7KNR / RG70G7KNR n x 1 / 2.5 / 4 / 6 / 10 / 16 / 25 mm²
		Digicode	DIGICODE 2 x 2 x 1.4 + 1 x 2 x 0.6 mm

Insulation material	Twisting	Watertightness	Moisture barrier sheath	Screen/ induction protection	Armour	Outer sheath material	Reduction factor
PE	cores	-	AL/PET-PE	-	steel tape	PE	-
PE	quads	-	AL/PET-PE	-	steel tape	PE	-
PE	cores	jelly filling	AL/PET-PE	-	steel tape	PE	-
PE	quads	jelly filling	AL/PET-PE	-	steel tape	PE	-
PE	cores	-	AL/PET-PE	-	steel tape	LSZH-FR	-
PE	quads	-	AL/PET-PE	-	steel tape	LSZH-FR	-
PE	cores	-	AL/PET-PE	CU wires	steel tape	PE	yes
PE	cores	-	AL/PET-PE	CU wires	steel tapes	PE	yes
PE	quads	-	AL/PET-PE	CU wires	steel tape	PE	yes
PE	quads	-	AL/PET-PE	CU wires	steel tape	PE	yes
PE	cores	-	AL/PET-PE	CU wires	steel tape	LSZH-FR	yes
PE	cores	-	AL/PET-PE	CU wires	steel tape	LSZH-FR	yes
PE	quads	-	AL/PET-PE	CU wires	steel tape	LSZH-FR	yes
PE	quads	-	AL/PET-PE	CU wires	steel tape	LSZH-FR	yes
PE	pairs	-	-	CU wires	steel tape	PVC	yes
PE	pairs	-	-	-	steel tape	PVC	-
PE	quads	-	-	CU wires	steel tape	PVC	yes
XLPE	pairs	-	-	CU wires	steel tape	PVC	yes
PE	quads	-	-	CU wires	-	LSZH-FR	-
PE	cores	jelly filling	-	-	steel tape	LSZH-FR	-
PE	pairs	jelly filling	AL/PET-PE	-	-	PE/PVC	-
PE	pairs	jelly filling	AL/PET-PE	AL wires	-	PE/PVC	yes
PE	cores	-	-	-	steel tape	LSZH-FR	-
PE	cores	-	-	AL wires	steel tape	LSZH-FR	yes
PE	cores	-	-	CU tape	steel tape	PE	yes
PE	quads	-	-	CU tape	steel tape	PE	yes
foam-skin-PE	quads	-	-	CU tape	steel tape	PE	yes
HEPR	cores	-	-	-	steel tape	PVC	-
foam-skin-PE	pairs	-	AL/PET-PE	-	steel tape	LSZH-FR	-

VDE designation codes for cables

1. Cable Type

- A- Outdoor cable
- AJ- Outdoor cable with protection against inductive interference

2. Cable Design

- 2Y Polyethylene (PE) insulation material
- 02Y Cellular polyethylene (PE) insulation material
- 02YS Foam-skin polyethylene (PE) insulation material
- DF Loose tube (fibre optic cable)
- F Petroleum jelly filling compound
- OF Low capacitance filling compound
- TF Filling with water swellable yarns and fleeces
- (L)2Y Moisture barrier sheath (laminated AL-foil bonded to PE sheath)
- (St) Screen of copper tape
- D Screen of concentrically positioned copper wires
- Z Screen of concentrically positioned aluminium wires
- (ZN) Non-metallic tensile strength elements
- (SR) Armouring of corrugated steel tape, longitudinally apllied
- B Armouring of helically applied steel tape
- Y Polyvinyl chloride (PVC) sheathing material
- 2Y Polyethylene (PE) sheathing material
- 4Y Polyamid (PA) sheathing material
- H Halogen free, flame retardant sheathing material
- V Reinforced sheathing

LSZH-FR

- LS Low smoke
- ZH Zero halogen
- FR Flame/Fire retardant

Explanation of symbols

Ambient temperature
Short circuit temperature
Fire behaviour
Smoke emission
Toxicity/Acidity

Permissible ambient temperature ranges. [°C during installation] [°C during operation and storage]

Maximum permissible short circuit temperature at conductor [°C]

EN/IEC 60332-1 flame retardant or EN/IEC 60332-3 fire retardant or EN/IEC 50200 fire resistant (only if applicable)

EN/IEC 61034

Insect resistance

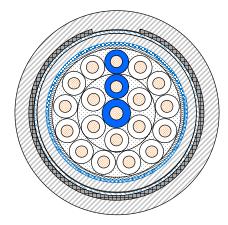
Bending radius

Insect and termite resistant

Minimum bending radius for installed cables in fixed applications. [for multiple bending] [for final bending] D = outer cable diameter

Popular railway cable data sheets

Index of data sheets


A-2YOF(L)2YB2Y (H115/H145)	page 20
AJ-2YOF(L)2YDB2Y (H115/H145)	page 22
A-2Y(L)2YB2Y (H45)	page 24
AJ-2Y(L)2YDB2Y (H45)	page 26
А-ННВН (Н115/Н145)	page 28
A-H(L)HBH (H45)	page 30
A-2Y(L)2YB2Y Balise Cable	page 32
A-2Y(L)2Y2YB2Y Combi Cable	page 34
GGSG 1.8/3 kV	page 36
N2XH-O 0.6/1 kV	page 38
A-DF(ZN)2Y(SR)2Y	page 40
EAPSP	page 42
EAPSP	page 44
CCPSSP-FR0.3	page 46
CCPSSP-FR0.3	page 48
UG70G7KNR - RG70G7KNR	page 50
DIGICODE Cable	page 52
ZPAU	page 54
ZPFU	page 56
Sw-CLT	page 58
PE-ALT-CLT Balise Cable	page 60
AJ-2Y2Y(St)2YB2Y-FR0.3	page 62
AJ-2Y2Y(St)2YB2Y-FR0.3	page 64
AJ-02YS2YD2YB2Y-FR0.1	page 66
A-2YTF2Y(L)2Y4Y	page 68
EPROTENAX SUBAQUA AT 1.8/3 kV	page 70
CU/EPR/WBT/DBT/LSOH 1.8/3 kV	page 72
GILA [®] -Duct	page 74
Many more cable types and tailor-made cables are available for your individual application.	

19

Railway Cables - Germany

Signalling Cable

A-2YOF(L)2YB2Y (H115/H145) n x 1 x 0.9 mm / 1.4 mm / 1.8 mm

APPLICATION

For railway signalling applications, wiring of light signals, point machines and similar wayside equipment, up to 420 V AC / 600 V DC.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 0.9 mm or 1.4 mm or 1.8 mm of diameter

Insulation PE, natural coloured, with one blue marker core in each layer

Twisting Cores laid up in layers

Filling Special filling compound

Moisture barrier sheath

Laminated sheath made of aluminium tape 0.15 mm, one side copolymer coated, bonded with

Inner sheath PE, black

Armouring One layer of galvanized steel tape 0.2 mm, helically applied

Outer sheath PE, black

Notes

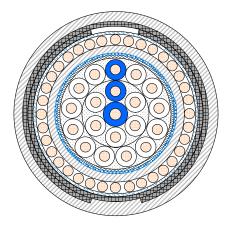
- Optional without armouring as A-2YOF(L)2YV.
- Detailed data sheet available upon request.

- > Signalling cable acc. to PH 416.0113 V2.1 of Deutsche Bahn
- > Logitudinally watertight
- > Core stranded, steel tape armoured

Characteristics	Unit	0.9 mm	1.4 mm	1.8 mm
Conductor resistance	Ω/km	≤ 28.9	≤ 11.9	≤ 7.2
Insulation resistance	GΩxkm	≥ 1.5	≥ 1.5	≥ 1.5
Mutual capacitance at 800 Hz	nF/km	≤ 115 ¹⁾	≤ 145 ²⁾	≤ 145 ²⁾
Operating voltage DC/AC	V	≤ 600/ ≤ 420	≤ 600/ ≤ 420	≤ 600/ ≤ 420
Test voltage at 50 Hz - 1 min				
core/core	Vrms	2500	2500	2500
core/screen	Vrms	2500	2500	2500

 $^{1)} \leq 120 \text{ nF/km}$ for single core in center

 $^{2)} \leq 155 \text{ nF/km}$ for single core in center


A-2YOF(L)2YB2Y

	n x 1 x 0.9 mm (H115)			n x 1	x 1.4 mm (H	145)	n x 1 x 1.8 mm (H145)		
No. of cores	Outer diameter	Cable weight	Standard length	Outer diameter	Cable weight	Standard length	Outer diameter	Cable weight	Standard length
	[mm]	[kg/km]	[m]	[mm]	[kg/km]	[m]	[mm]	[kg/km]	[m]
2	13.0	160	1000	-	-	-	-	-	-
4	13.0	170	1000	14.0	240	1000	16.0	300	1000
7	14.0	220	1000	17.0	320	1000	19.0	430	1000
10	17.0	290	1000	18.0	410	1000	21.0	560	1000
14	17.0	300	1000	19.0	490	1000	22.0	680	1000
20	18.0	380	1000	22.0	630	1000	25.0	890	1000
24	20.0	460	1000	23.0	730	1000	27.0	1060	1000
30	20.0	490	1000	24.0	840	1000	29.0	1230	1000
40	21.0	590	1000	27.0	1050	1000	32.0	1560	1000
50	23.0	700	1000	29.0	1280	1000	36.0	1940	1000
60	25.0	800	1000	32.0	1490	1000	38.0	2280	1000
80	26.0	1000	1000	35.0	1920	1000	42.0	2920	1000
100	27.5	1250	1000	39.0	2350	1000	47.0	3630	500
120	32.0	1390	1000	41.0	2730	1000	49.0	4230	500
140	35.0	1650	1000	44.0	3140	1000	53.0	4890	500
160	36.0	1790	1000	46.0	3540	500	55.0	5490	500
180	39.0	2030	1000	49.0	3970	500	59.0	6160	500
200	39.0	2150	1000	50.0	4310	500	60.0	6710	500

Railway Cables - Germany

Signalling Cable

AJ-2YOF(L)2YDB2Y (H115/H145) n x 1 x 0.9 mm / 1.4 mm / 1.8 mm

APPLICATION

For railway signalling applications, wiring of light signals, point machines and similar wayside equipment, up to 420 V AC / 600 V DC. Protected against inductive interferences, for example on AC electrifed railroads.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 0.9 mm or 1.4 mm or 1.8 mm of diameter

Insulation

PE, natural coloured, with one blue marker core in each layer

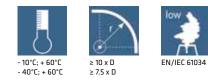
Twisting Cores laid up in layers

Filling

Special filling compound

Moisture barrier sheath Laminated sheath made of aluminium tape 0.15 mm, one side copolymer coated, bonded with

Inner sheath PE, black


Shielding Concentrically positioned copper wires

Armouring Two layers of galvanized steel tape 0.5 mm or 0.8 mm, helically applied

Outer sheath PE, black

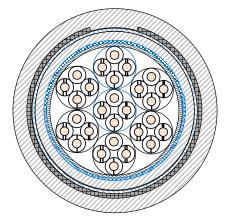
Notes

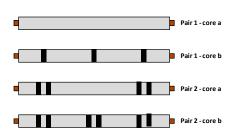
- Detailed data sheet available upon request.

- > Signalling cable acc. to PH 416.0113 V2.1 of Deutsche Bahn
- > Logitudinally watertight
- > Core stranded, steel tape armoured
- > Protected against inductive interference

Characteristics	Unit	0.9 mm	1.4 mm	1.8 mm
Conductor resistance	Ω/km	≤ 28.9	≤ 11.9	≤ 7.2
Insulation resistance	GΩxkm	≥ 1.5	≥ 1.5	≥ 1.5
Mutual capacitance at 800 Hz	nF/km	≤ 115 ¹⁾	≤ 145 ²⁾	≤ 145 ²⁾
Operating voltage DC/AC	V	≤ 600/ ≤ 420	≤ 600/ ≤ 420	≤ 600/ ≤ 420
Test voltage at 50 Hz - 1 min				
core/core	Vrms	2500	2500	2500
core/screen	V _{rms}	2500	2500	2500

 $^{1)} \leq 120 \text{ nF/km}$ for single core in center


 $^{2)} \leq 155 \text{ nF/km}$ for single core in center


AJ-2YOF(L)2YDB2Y

		n x 1 x 0.9 mm (H115)		n x 1 x 1.4 mm (H145)			n x 1 x 1.8 mm (H145)			
No. of cores	Reduction factor class	Outer diameter	Cable weight	Standard length	Outer diameter	Cable weight	Standard length	Outer diameter	Cable weight	Standard length
	r _k	[mm]	[kg/km]	[m]	[mm]	[kg/km]	[m]	[mm]	[kg/km]	[m]
10	600	21.0	650	1000	22.0	790	1000	25.0	1010	1000
20	600	22.0	750	1000	26.0	1090	1000	29.0	1420	1000
30	600	24.0	900	1000	28.0	1350	1000	33.0	1840	1000
50	600	27.0	1190	1000	33.0	1890	1000	39.0	2670	1000
80	600	30.0	1560	1000	32.0	2630	1000	42.0	3770	500
120	600	35.0	2040	1000	44.0	3560	1000	52.0	5210	500
160	600	39.0	2500	1000	49.0	4460	500	58.0	6600	500
200	600	41.0	2930	1000	53.0	5290	500	63.0	7900	250
10	500	21.0	750	1000	22.0	920	1000	25.0	1150	1000
20	500	22.0	870	1000	26.0	1230	1000	29.0	1570	1000
30	500	24.0	1040	1000	28.0	1490	1000	33.0	2010	1000
50	500	27.0	1320	1000	33.0	2080	1000	32.0	2870	1000
80	500	30.0	1740	1000	38.0	2850	1000	46.0	4090	500
120	500	35.0	2230	1000	45.0	3380	500	53.0	5560	500
160	500	39.0	2720	1000	50.0	4790	500	59.0	6980	250
200	500	41.0	3160	1000	54.0	5650	500	64.0	8320	250
30	400	-	-	-	-	-	-	36.0	2690	1000
50	400	-	-	-	36.0	2770	1000	43.0	3800	500
80	400	-	-	-	42.0	3770	500	49.0	5100	500
120	400	-	-	-	48.0	4870	500	56.0	6730	500
160	400	-	-	-	53.0	5880	500	62.0	8290	250
200	400	-	-	-	57.0	6830	500	67.0	9730	250

Axle Counter Signalling Cable

A-2Y(L)2YB2Y (H45) n x 4 x 0.9 mm / 1.4 mm

APPLICATION

In railway signalling applications for transmission of low frequent signal through symmetric circuits, for example axle counter devices and similar wayside equipment.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 0.9 mm or 1.4 mm of diameter

Insulation

PE, natural coloured with ring marking, each first quad in layer carries a blue helix, all other quads carry white helixes

Twisting

Cores twisted to star quads, quads laid up in layers

Moisture barrier sheath

Laminated sheath made of aluminium tape 0.15 mm, one side copolymer coated, bonded with

Inner sheath

PE, black

Armouring

One layer of galvanized steel tape 0.2 mm, helically applied

Outer sheath PE, black

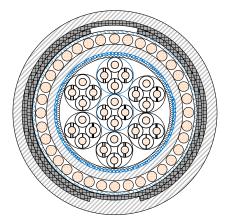
Notes

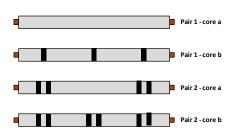
- Optional without armouring as A-2Y(L)2YV.
- Detailed data sheet available upon request.

> Signalling cable acc. to PH 416.0115 V1.1 of Deutsche Bahn

> Star quad stranded, steel tape armoured

Characteristics	Unit	0.9 mm	1.4 mm
Conductor loop resistance	Ω/km	≤ 56.6	≤ 23.4
Insulation resistance	GΩxkm	≥ 10	≥ 10
Mutual capacitance at 800 Hz	nF/km	≤ 45 ¹⁾	≤ 45 ¹⁾
Capacitance unbalance at 800 Hz			
k ₁ (100 % / 50 % of all values)	pF/500 m	≤ 650 / ≤ 150	≤ 650 / -
k ₉₋₁₂ neighboured quads	pF/500 m	≤ 500 / ≤ 150	≤ 500 / -
k ₉₋₁₂ over-neighboured quads	pF/500 m	≤ 150	≤ 150
e _{a1/2}	pF/500 m	≤ 1300	≤ 1300
Far-end crosstalk attenuation at 90 kHz			
100 % / 80 % of all values	dB/km	≥ 58 / ≥ 62	≥ 33 / -
Attenuation at 90 kHz	dB/km	≤ 3.3	≤ 2.6
Test voltage at 50 Hz - 1 min			
core/core	V _{rms}	2500	2500
core/screen	V _{rms}	2500	2500


 $^{1)}$ \leq 52 nF/km for 1 x 4 x ø and for central quads, where 1st layer consist only of one quad, as well as in the outer layer of armoured cables.


A-2Y(L)2YB2Y

	n	x 4 x 0.9 mm (H4	5)	n x 4 x 1.4 mm (H45)		
No. of quads	Outer diameter [mm]	Cable weight [kg/km]	Standard length [m]	Outer diameter [mm]	Cable weight [kg/km]	Standard length [m]
1	12.0	190	1000	14.0	260	1000
З	17.0	330	1000	21.0	570	1000
5	19.0	470	1000	24.0	820	1000
7	21.0	580	1000	26.0	1020	1000
10	24.0	750	1000	33.0	1190	1000
14	27.0	940	1000	36.0	1550	1000
20	30.0	1030	1000	42.0	2070	1000
30	36.0	1430	1000	49.0	2900	1000
40	40.0	1810	1000	55.0	3730	500

Axle Counter Signalling Cable

AJ-2Y(L)2YDB2Y (H45) n x 4 x 0.9 mm / 1.4 mm

APPLICATION

In railway signalling applications for transmission of low frequent signal through symmetric circuits, for example axle counter devices and similar wayside equipment. Protected against inductive interferences, for example on AC electrifed railroads.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 0.9 mm or 1.4 mm of diameter

Insulation

PE, natural coloured with ring marking, each first quad in layer carries a blue helix, all other quads carry white helixes

Twisting

Cores twisted to star quads, quads laid up in layers

Moisture barrier sheath

Laminated sheath made of aluminium tape 0.15 mm, one side copolymer coated, bonded with

Inner sheath PE, black

Shielding

Concentrically positioned copper wires

Armouring

Two layers of galvanized steel tape 0.5 mm or 0.8 mm, helically applied

Outer sheath PE, black

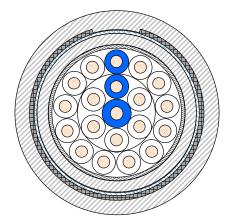
Notes

- Detailed data sheet available upon request.

- > Signalling cable acc. to PH 416.0115 V1.1 of Deutsche Bahn
- > Star quad stranded, steel tape armoured
- > With protection against inductive interference

Characteristics	Unit	0.9 mm	1.4 mm
Conductor loop resistance	Ω/km	≤ 56.6	≤ 23.4
Insulation resistance	GΩxkm	≥ 10	≥ 10
Mutual capacitance at 800 Hz	nF/km	≤ 45 ¹⁾	≤ 45 ¹⁾
Capacitance unbalance at 800 Hz			
k ₁ (100 % / 50 % of all values)	pF/500 m	≤ 650 / ≤ 150	≤ 650 / -
k ₉₋₁₂ neighboured quads	pF/500 m	≤ 500 / ≤ 150	≤ 500 / -
k ₉₋₁₂ over-neighboured quads	pF/500 m	≤ 150	≤ 150
e _{a1/2}	pF/500 m	≤ 1300	≤ 1300
Far-end crosstalk attenuation at 90 kHz			
100 % / 80 % of all values	dB/km	≥ 58 / ≥ 62	≥ 33 / -
Attenuation at 90 kHz	dB/km	≤ 3.3	≤ 2.6
Test voltage at 50 Hz - 1 min			
core/core	V _{rms}	2500	2500
core/screen	V _{rms}	2500	2500

 $^{1)}$ \leq 52 nF/km for 1 x 4 x ø and for central quads, where 1st layer consist only of one quad, as well as in the outer layer of armoured cables.


AJ-2Y(L)2YDB2Y

		n>	< 4 x 0.9 mm (H4	-5)	n	x 4 x 1.4 mm (H4	15)
No. of quads	Reduction factor class	Outer diameter	Cable weight	Standard length	Outer diameter	Cable weight	Standard length
	r _k	[mm]	[kg/km]	[m]	[mm]	[kg/km]	[m]
3	600	21.0	800	1000	-	-	-
5	600	23.0	1010	1000	-	-	-
10	600	28.0	1430	1000	-	-	-
20	600	35.0	2130	1000	-	-	-
30	600	40.0	2800	1000	-	-	-
40	600	45.0	3380	1000	-	-	-
3	500	-	-	-	25.0	1350	1000
5	500	-	-	-	29.0	1760	1000
10	500	-	-	-	37.0	2620	1000
20	500	-	-	-	47.0	4040	500
30	500	-	-	-	54.0	5330	500
40	500	-	-	-	61.0	6550	500
5	400	-	-	-	31.0	2470	1000
10	400	31.0	2250	1000	39.0	3610	1000
20	400	38.0	3240	1000	49.0	5260	500
30	400	43.0	4080	500	56.0	6690	500
40	400	48.0	4800	500	63.0	8070	250

Railway Cables - Germany

Signalling Cable for Tunnels

A-HHBH (H115/H145) n x 1 x 0.9 mm / 1.4 mm / 1.8 mm

APPLICATION

For railway signalling applications, wiring of light signals, point machines and similar wayside equipment, up to 420 V AC / 600 V DC. For use in areas with risk of fire, indoor or in tunnel sections.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 0.9 mm or 1.4 mm or 1.8 mm of diameter

Insulation LSZH PE, natural coloured, with one blue marker core in each layer

Twisting Cores laid up in layers

Inner sheath LSZH-FR PE, black

Armouring

One layer of galvanized steel tape 0.2 mm, helically applied

Outer sheath LSZH-FR PE, black

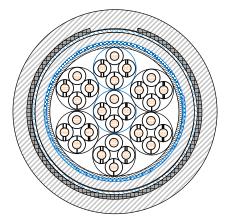
Notes

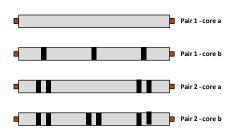
- Optional without armouring as A-HHV.
- Detailed data sheet available upon request.

- > Signalling cable based on PH 416.0113 V1.1 of Deutsche Bahn
- > Core stranded, steel tape armoured
- > Low smoke, halogen free and flame retardant design

Characteristics	Unit	0.9 mm	1.4 mm	1.8 mm
Conductor resistance	Ω/km	≤ 28.9	≤ 11.9	≤ 7.2
Insulation resistance	GΩxkm	≥ 1.5	≥ 1.5	≥ 1.5
Mutual capacitance at 800 Hz	nF/km	≤ 115 ¹⁾	≤ 145 ²⁾	≤ 145 ²⁾
Operating voltage DC/AC	V	≤ 600/ ≤ 420	≤ 600/ ≤ 420	≤ 600/ ≤ 420
Test voltage at 50 Hz - 1 min				
core/core	Vrms	2500	2500	2500
core/screen	V _{rms}	2500	2500	2500

 $^{1)} \leq 120 \text{ nF/km}$ for single core in center


 $^{2)} \leq 155 \text{ nF/km}$ for single core in center


A-HHBH

	n x 1 x 0.9 mm (H115)		n x 1	n x 1 x 1.4 mm (H145)			n x 1 x 1.8 mm (H145)		
No. of cores	Outer diameter	Cable weight	Standard length	Outer diameter	Cable weight	Standard length	Outer diameter	Cable weight	Standard length
	[mm]	[kg/km]	[m]	[mm]	[kg/km]	[m]	[mm]	[kg/km]	[m]
2	12.0	190	1000	-	-	-	-	-	-
4	12.5	209	1000	14.0	280	1000	15.5	330	1000
7	13.5	254	1000	15.5	358	1000	17.0	440	1000
10	15.0	315	1000	17.5	457	1000	20.0	580	1000
14	15.5	355	1000	18.5	547	1000	21.0	710	1000
20	16.5	421	1000	20.0	682	1000	24.0	925	1000
24	18.5	489	1000	22.0	785	1000	26.0	1060	1000
30	19.0	537	1000	23.0	901	1000	27.0	1240	1000
40	20.0	631	1000	24.5	1098	1000	30.0	1560	1000
50	22.0	746	1000	27.5	1319	1000	-	-	-
60	23.0	840	1000	29.0	1506	1000	-	-	-
80	25.0	1023	1000	-	-	-	-	-	-
100	28.0	1228	1000	36.0	2324	1000	-	-	-
120	29.0	1389	1000	-	-	-	-	-	-
140	31.0	1575	1000	40.5	3062	1000	-	-	-

Axle Counter Signalling Cable for Tunnels

A-H(L)HBH (H45) n x 4 x 0.9 mm / 1.4 mm

APPLICATION

In railway signalling applications for transmission of low frequent signal through symmetric circuits, for example axle counter devices and similar wayside equipment. For use in areas with risk of fire, indoor or in tunnel sections.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 0.9 mm or 1.4 mm of diameter

Insulation

LSZH PE, natural coloured with ring marking, each first quad in layer carries a blue helix, all other quads carry white helixes

Twisting

Cores twisted to star quads, quads laid up in layers

Moisture barrier sheath

Laminated sheath made of aluminium tape 0.15 mm, one side copolymer coated, bonded with

Inner sheath

LSZH-FR PE, black

Armouring

One layer of galvanized steel tape 0.2 mm, helically applied

Outer sheath LSZH-FR PE, black

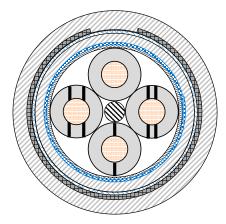
Notes

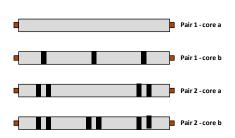
- Optional without armouring as A-H(L)HV.
- Detailed data sheet available upon request.

- > Signalling cable based on PH 416.0115 V1.1 of Deutsche Bahn
- > Star quad stranded, steel tape armoured
- > Low smoke, halogen free and flame retardant design

Characteristics	Unit	0.9 mm	1.4 mm
Conductor loop resistance	Ω/km	≤ 56.6	≤ 23.4
Insulation resistance	GΩxkm	≥ 10	≥ 10
Mutual capacitance at 800 Hz	nF/km	≤ 45 ¹⁾	≤ 45 ¹⁾
Capacitance unbalance at 800 Hz			
k ₁ (100 % / 50 % of all values)	pF/500 m	≤ 650 / ≤ 150	≤ 650 / -
k ₉₋₁₂ neighboured quads	pF/500 m	≤ 500 / ≤ 150	≤ 500 / -
k ₉₋₁₂ over-neighboured quads	pF/500 m	≤ 150	≤ 150
e _{a1/2}	pF/500 m	≤ 1300	≤ 1300
Far-end crosstalk attenuation at 90 kHz			
100 % / 80 % of all values	dB/km	≥ 58 / ≥ 62	≥ 33 / -
Attenuation at 90 kHz	dB/km	≤ 3.3	≤ 2.6
Test voltage at 50 Hz - 1 min			
core/core	V _{rms}	2500	2500
core/screen	Vrms	2500	2500

 $^{1)}$ \leq 52 nF/km for 1 x 4 x ø and for central quads, where 1st layer consist only of one quad, as well as in the outer layer of armoured cables.


A-H(L)HBH


	n x 4 x 0.9 mm (H45)			n x 4 x 1.4 mm (H45)		
No. of quads	Outer diameter	Cable weight	Standard length	Outer diameter	Cable weight	Standard length
	[mm]	[kg/km]	[m]	[mm]	[kg/km]	[m]
1	13.5	260	1000	15.5	350	1000
З	18.0	450	1000	22.5	680	1000
5	20.5	580	1000	26.0	930	1000
7	22.0	680	1000	28.5	1130	1000
10	25.5	860	1000	33.5	1480	1000
14	28.0	1050	1000	37.5	1860	1000
20	-	-	-	42.5	2440	1000

Railway Cables - Germany

Balise Signalling Cable

A-2Y(L)2YB2Y Balise Cable n x 4 x 1.4 mm / 1.53 mm

APPLICATION

For railway safety equipment, used for train detection according to ETCS (European Train Control System) technology. Max. installation distance up to 2000 m.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 1.4 mm or 1.53 mm of diameter

Insulation PE, natural coloured with ring marking

Twisting Cores twisted to star quad

Moisture barrier sheath Laminated sheath made of aluminium tape 0.15 mm, one side copolymer coated, bonded with

Inner sheath

PE, black

Armouring

One layer of galvanized steel tape 0.2 mm, helically applied

Outer sheath PE, black

Notes

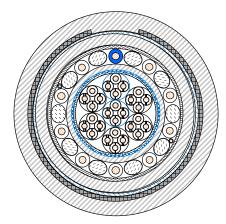
- Optional with protection against inductive interference as AJ-2Y(L)2YDB2Y.
- Detailed data sheet available upon request.

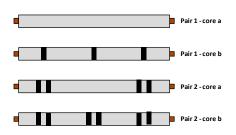
> Balise cable acc. to PH 416.0120 V0.4 of Deutsche Bahn

> Star quad stranded, steel tape armoured

Characteristics	Unit	1.4 mm	1.53 mm
Max. installation distance	m	500	2000
Conductor cross-section	mm²	1.5	1.8
Conductor loop resistance	Ω/km	≤ 23.4	≤ 19.8
Insulation resistance	GΩxkm	≥ 10	≥ 10
Mutual capacitance at 800 - 1000 Hz	nF/km	≤ 52	≤ 43
Capacitance unbalance at 800 -1000 Hz			
k ₁	pF/500 m	≤ 650	≤ 240
e _{1/2}	pF/500 m	≤ 1300	≤ 650
Impedance at			
8.8 kHz	Ω	147 ± 15 %	147 ± 15 %
200 - 600 kHz	Ω	120 ± 10 %	120 ± 10 %
1800 kHz	Ω	-	120 ± 10 %
Attenuation at			
8.8 kHz	dB/km	≤ 2	≤ 0.8
280 kHz	dB/km	≤ 5	≤ 3 ¹⁾
560 kHz	dB/km	≤7	≤ 4.2
1800 kHz	dB/km	-	≤ 8
Near-end crosstalk attenuation at 1 MHz	dB	≥ 55	≥ 60
Test voltage at 50 Hz - 1 min			
core/core	Vrms	2500	2500
core/screen	V _{rms}	2500	2500

¹⁾ The attenuation at 280 kHz must not be more than 1.8 dB/km smaller than the attenuation at 560 kHz.


A-2Y(L)2YB2Y Balise Cable


	n x 4 x 1.4 mm			n x 4 x 1.53 mm			
No. of quads	Outer diameter [mm]	Cable weight [kg/km]	Standard length [m]	Outer diameter [mm]	Cable weight [kg/km]	Standard length [m]	
1	14.0	260	2000	18	350	2000	

Railway Cables - Germany

Signalling Cable

A-2Y(L)2Y2YB2Y Combi Cable n x 4 x 0.9 / 1.4 mm + m x 1 x 0.9 / 1.4 / 1.8 mm

APPLICATION

For railway signalling applications for transmission of low frequent signal through symmetric circuits, for example axle counter devices and similar wayside equipment with simultan power supply to the line side units.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 0.9 mm, 1.4 mm or 1.8 mm of diameter

Insulation

Data cores: PE, natural coloured with ring marking, each first quad in layer carries a blue helix, all other quads carry white helixes Power cores: PE, natural coloured, with one blue marker core in each layer

Twisting

Cores twisted to star quads, quads laid up in layers

Moisture barrier sheath

Laminated sheath made of aluminium tape 0.15 mm, one side copolymer coated, bonded with inner sheath PE, black

Stranding

Power cores laid up in layers

Intermediate sheath PE. black

Armouring

One layer of galvanized steel tape 0.2 mm, helically applied

Outer sheath PE, black

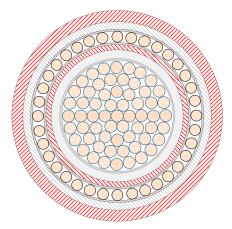
Notes

- Optional with protection against inductive interference
- as AJ-2Y(L)2YDB2Y and without armouring as A-2Y(L)2Y2YV.
- Detailed data sheet available upon request.

- > Combi cable acc. to PH 416.0118 of Deutsche Bahn
- > Star quad + single core stranded, steel tape armoured
- > Optional with protection against inductive interference

Characteristics	Unit	Data	quads		Power cores	
		0.9 mm	1.4 mm	0.9 mm	1.4 mm	1.8 mm
Conductor loop resistance	Ω/km	≤ 56.6	≤ 23.4	-	-	-
Conductor resistance	Ω/km	-	-	≤ 28.9	≤ 11.9	≤ 7.2
Insulation resistance	GΩxkm	≥ 10	≥ 10	≥ 10	≥ 10	≥ 10
Mutual capacitance at 800 Hz	nF/km	≤ 45 ¹⁾	≤ 45 ¹⁾	≤ 120	≤ 120	≤ 120
Capacitance unbalance at 800 Hz				-	-	-
k ₁	pF/500 m	≤ 650	≤ 650	-	-	-
k ₉₋₁₂ adjacent quads	pF/500 m	≤ 500	≤ 500	-	-	-
k ₉₋₁₂ over-adjacent quads	pF/500 m	≤ 150	≤ 150	-	-	-
e _{a1/2}	pF/500 m	≤ 1300	≤ 1300	-	-	-
Near-end crosstalk attenuation at 40 kHz				-	-	-
in quad, average value	dB	≥ 65	≥ 65	-	-	-
minimum single value	dB	≥ 60	≥ 60	-	-	-
adjacent quad, average value	dB	≥ 65	≥ 65	-	-	-
minimum single value	dB	≥ 60	≥ 60	-	-	-
over-adjacent quad, average value	dB	≥ 70	≥ 70	-	-	-
minimum single value	dB	≥ 60	≥ 60	-	-	-
quad in adjacent lay, average value	dB	≥ 75	≥ 75	-	-	-
minimum single value	dB	≥ 65	≥ 65	-	-	-
Characteristic impedance at 40 kHz	Ω	130 ± 12 %	130 ± 12 %	-	-	-
Attenuation at 40 kHz	dB/km	≤ 2.6	≤ 1.5	-	-	-
Test voltage at 50 Hz - 1 min						
core/core	Vrms	2500	2500	2500	2500	2500
core/screen	Vrms	2500	2500	2500	2500	2500

 $^{1)}$ \leq 52 nF/km for 1 x 4 x ø and for central quads, where 1st layer consist only of one quad, as well as in the outer layer of armoured cables.


A-2Y(L)2Y2YB2Y und AJ-2Y(L)2YDB2Y Combi Cable

Dimension	Outer diameter	Cable weight	Standard length
	[mm]	[kg/km]	[m]
A-2Y(L()2Y2YV1x4x0.9+4x1x1.45	19.0	350	1000
A-2Y(L()2YB2Y1x4x0.9+4x1x1.4S	23.0	520	1000
A-2Y(L()2YDB2Y1x4x0.9+4x1x1.4Srk600	27.0	1100	1000
A-2Y(L()2YDB2Y1x4x0.9+4x1x1.4Srk500	27.0	1150	1000
A-2Y(L()2YDB2Y1x4x0.9+4x1x1.4Srk400	29.0	1870	1000
A-2Y(L()2Y2YV 7 x 4 x 1.4 + 10 x 1 x 1.8 S	35.5	1360	1000
A-2Y(L()2YB2Y 7 x 4 x 1.4 + 10 x 1 x 1.8 S	39.0	1670	1000
A-2Y(L()2YDB2Y 7 x 4 x 1.4 + 10 x 1 x 1.8 S rk600	39.0	2400	1000
A-2Y(L()2YDB2Y 7 x 4 x 1.4 + 10 x 1 x 1.8 S rk500	40.0	2660	1000
A-2Y(L()2YDB2Y 7 x 4 x 1.4 + 10 x 1 x 1.8 S rk400	42.0	3820	1000

Railway Cables - Germany

Track Feeder Cable

GGSG 1.8/3 kV 1 x 300 RF / 95 F

APPLICATION

Track feeder cable for indoor and outdoor use, in areas with difficult installation conditions and risk of vibration. Suitable for installation in ducts and pipes, on ballast and for direct burial.

CONSTRUCTION

Conductor Bare round copper conductor, stranded class 5, soft annealed

Separation layer Optional

Insulation Extruded rubber compound 3GI3 acc. DIN VDE 0207-20, natural coloured

Inner sheath Extruded rubber compound 5GM3 acc. DIN VDE 0207-21, red coloured

Separation layer Optional

Screen Screen of copper wires 95 mm²

Separation layer Optional

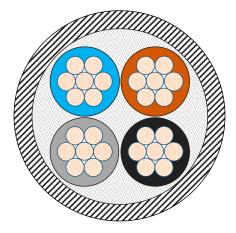
Insulation Extruded rubber compound 3GI3 acc. DIN VDE 0207-20, natural coloured

Outer sheath Extruded rubber compound 5GM5 acc. DIN VDE 0207-21, red coloured

Notes

- > Track feeder cable
- > Single core design, screened> Excellent mechanical characteristics

Characteristics	Unit	Value
Conductor cross-section	mm²	300
Conductor resistance	Ω/km	max. 0.0641
Max.continuous conductor temperature	°C	≤ 90
Operating voltage U _o / U	V	1800 / 3000
Voltage test 50 Hz	V _{rms}	6000


GGSG

Cross-	Diameter over	Wall thickness	Wall thickness	Diameter over	Diameter over	Wall thickness	Wall thickness	Outer cable
section	conductor	insulation	inner sheath	inner sheath	screen	insulation	outer sheath	diameter
[mm²]	[mm]	[kg/km]	[Ω/km]	[mm]	[mm]	[mm]	[mm]	[mm]
1x300/95	24	2.4	1.4	32	38	1.5	2.1	46

Railway Cables - Germany

Power Cable

N2XH-O 0.6/1 kV 4 x 35 mm² RM

APPLICATION

Used as power supply cable indoor or outdoor, in tunnels or railway stations with improved fire behaviour. Not suitable for direct burial.

CONSTRUCTION

Conductor

Bare round copper conductor class 1 (\leq 16 mm²) or class 2 (\leq 35 mm²) or class 2 sector shaped (> 35 mm²), soft annealed

Insulation Cross-linked PE, colour code: blue, brown black, grey

Outer sheath

Afumex LSOH compound, black

Notes

- > Power cable acc. to DIN VDE 0276/604.5G
- > Multi core design
- > Low smoke, halogen free and flame retardant design

Characteristics	Unit	Value
Conductor resistance	Ω/km	see table below
Max.continuous conductor temperature	°C	≤ 90
Voltage test	kV/1 min	4

N2XH-0 0.6/1 kV

Cross- section	Conductor resistance	Outer diameter	Cable weight
[mm²]	[Ω/km]	[mm]	[kg/km]
4 x 6 RE	3.08	14	390
4 x 10 RE	1.83	17	610
4 x 16 RE	1,15	19	870
4 x 25 RM	0.727	24	1350
4 x 35 RM	0.524	27	1800
4 x 50 SM	0.387	28	2150
4 x 70 SM	0.268	34	3100
4 x 95 SM	0.193	38	4100
4 x 120 SM	0.153	41	5150
4 x 150 SM	0.124	46	6300

Railway Cables - Germany

Fibre Optic Cable

A-DF(ZN)2Y(SR)2Y E9/125 0.36 F3.5 / 0.23 H18 LG

APPLICATION

Outdoor fibre optic cable for telecommunication applications in pipes or ducts along railway tracks.

CONSTRUCTION

Central strength member (CSM)

Glass fibre reinforced plastic rod (FRP) with or without plastic oversheathing

Loose tube

Thermoplastic material up to 12 fibres and filled with suitable water tightness compound

Filler elements Thermoplastic rods (in case needed)

Stranding Loose tubes (and fillers), SZ-stranded around CSM

Filling

Suitable filling compound for longitudinal water tightness

Tensile strength elements Aramid yarns

Inner sheath PE, black

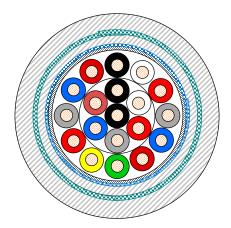
Armouring Coated, corrugated steel tape, longitudinally applied with overlap

Outer sheath PE, black

Notes

- > Fibre optic cable acc. to Dlk 1.011.003y of Deutsche Bahn
- > Single mode E9/125
- > Steel tape armoured

Characteristics	Unit	Value				
Wave length	nm	1310 1550				
Attenuation	dB/km	≤ 0.36	≤ 0.26			
Dispersion	ps/(nm*km)	≤ 3.5	≤ 18			
Tensile strength (12-96 fibres)	Ν	2500				
Tensile strength (144 fibres)	Ν	3500				


A-DF(ZN)2Y(SR)2Y

No. of fibres	Design	Diameter loose tube [mm]	Diameter CSM [mm]	Wall thickness inner sheath [mm]	Wall thickness outer sheath [mm]	Outer cable diameter [mm]	Cable weight [kg/km]	Standard length [m]
12	6 x 2	2.0	2.1	2.0	1.4	15	210	2000
24	6 x 4	2.0	2.1	2.0	1.4	15	210	2000
48	4 x 12	2.8	2.1	2.0	1.4	17	260	2000
60	5 x 12	2.8	2.1	2.0	1.4	17	260	2000
72	6 x 12	2.8	3.0	2.0	1.4	17.5	285	2000
84	7 x 12	2.8	3.0	2.0	1.4	18.5	310	2000
96	8 x 12	2.8	3.0	2.0	1.4	19.5	340	2000
144	12 x 12	2.8	3.5	2.0	1.4	23	470	2000

Railway Cables - Spain

Signalling Cable

EAPSP n x 1 x 0.9 mm / 1.4 mm

APPLICATION

For railway signalling applications, wiring of light signals, point machines and similar wayside equipment.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 0.9 mm or 1.4 mm of diameter

Insulation

PE, color code by layer: starter core black, direction core white, all other cores red, grey, blue, brown, green, yellow - repetitive

Twisting

Cores laid up in layers

Moisture barrier sheath

Laminated sheath made of aluminium tape 0.2 mm, one side copolymer coated, bonded with

Inner sheath

PE, black

Armouring

Coated, corrugated steel tape, longitudinally applied with overlap

Outer sheath

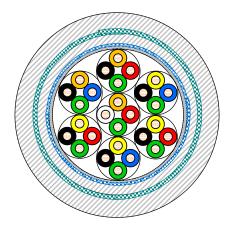
PE, black

Notes

- Detailed data sheet available upon request.
- Optional in halogen free, flame retardant version as EATST.
- Also available in pair twisting or with individual shielded pairs.
- Optional available in a longitudinal watertight version EAPSP-R.

> Signalling cable acc. to E.T. 03.365.051.6, 03/2005 of adif

> Core stranded, steel tape armoured


Characteristics	Unit	0.9 mm	1.4 mm
Conductor resistance, mean value	Ω/km	28.9	11.7
Resistance unbalance	%	2	2
Insulation resistance	GΩxkm	≥ 25	≥ 25
Dielectric strength at 50 Hz, 1 min			
core/core	V _{rms}	2100	2100
core/screen	V _{rms}	2500	2500
core/armouring	V _{rms}	2000	2000

EAPSP

		n x 1 x 0.9 mm		n x 1 x 1.4 mm			
No. of cores	Outer diameter [mm]	Cable weight [kg/km]	Standard length [m]	Outer diameter [mm]	Cable weight [kg/km]	Standard length [m]	
4	-	-	-	16.0	270	1000	
7	-	-	-	17.5	350	1000	
9	-	-	-	20.0	420	1000	
12	17.0	290	1000	20.5	440	1000	
19	19.0	365	1000	22.0	560	1000	
27	21.0	460	1000	14.5	740	1000	
37	23.0	565	1000	26.5	930	1000	
48	25.0	685	1000	29.5	1160	1000	
61	-	-	-	32.0	1490	1000	

Signalling Cable

EAPSP n x 4 x 0.9 mm / 1.4 mm

APPLICATION

For railway signalling applications, for example axle counter, level crossing gates and similar wayside equipment.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 0.9 mm or 1.4 mm of diameter

Insulation

PE, color code see specification adif

Twisting

Cores twisted to star quads, star quads laid up in layers

Moisture barrier sheath

Laminated sheath made of aluminium tape 0.2 mm, one side copolymer coated, bonded with

Inner sheath PE, black

Armouring

Coated, corrugated steel tape, longitudinally applied with overlap

Outer sheath

PE, black

Notes

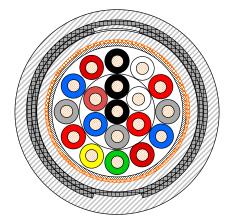
- Detailed data sheet available upon request.
- Optional in halogen free, flame retardant version as EATST.
- Also available in pair twisting or with individual shielded pairs.
- Optional available in a longitudinal watertight version as EAPSP-R.

> Signalling cable acc. to E.T. 03.365.051.6, 03/2005 of adif

> Star quad stranded, steel tape armoured

Characteristics	Unit	0.9 mm	1.4 mm
Conductor resistance, mean value	Ω/km	28.5	11.7
Resistance unbalance	%	1	1
Insulation resistance	GΩxkm	≥ 25	≥ 25
Mutual capacitance at 800 Hz	nF/km	≤ 41	≤ 45
Capacitance unbalance at 800 Hz			
k, mean/individual value	pF/460 m	≤ 35 / 250	≤ 35 / 250
k ₉₋₁₂ mean/individual value	pF/460 m	≤ 35 / 250	≤ 35 / 250
e _{a1/2} mean/individual value	pF/460 m	≤ 320 / 1200	≤ 320 / 1200
Attenuation at 1 kHz	dB/km	≤ 0.7	≤ 0.46
Dielectric strength at 50 Hz, 1 min			
core/core	V _{rms}	2100	2100
core/screen	V _{rms}	2500	2500
core/armouring	V _{rms}	2000	2000

EAPSP


		n x 4 x 0.9 mm		n x 4 x 1.4 mm			
No. of quads	Outer diameter	Cable weight	Standard length	Outer diameter	Cable weight	Standard length	
	[mm]	[kg/km]	[m]	[mm]	[kg/km]	[m]	
1	15.0	205	1000	17.0	275	1000	
З	19.0	315	1000	23.0	490	1000	
5	21.5	430	1000	26.0	690	1000	
7	23.0	500	1000	30.0	885	1000	
10	27.5	750	1000	34.0	1185	1000	
14	30.0	920	1000	38.0	16650	500	
19	-	-	-	43.0	2120	500	

Railway Cables - Spain

Signalling Cable

CCPSSP-FR0.3

n x 1 x 1.4 mm

APPLICATION

For railway signalling applications, wiring of light signals, point machines and similar wayside equipment.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 1.4 mm of diameter

Insulation

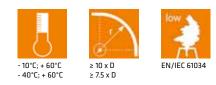
PE, color code see specification adif

Twisting

Cores laid up in layers

Screen Corrugated copper tape with overlap, longitudinally applied

Inner sheath PE, black


Armouring

Two layers of galvanized steel tape 0.5 or 0.8 mm, helically applied

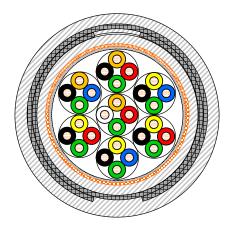
Outer sheath PE, black

Notes

- Detailed data sheet available upon request.
- Optional in core stranded version.
- Optional in halogen free, flame retardant version as CCTSST-FR0.3.

- > Signalling cable acc. to E.T. 03.365.051.6, 03/2005 of adif
- > Core stranded, steel tape armoured
- > With protection against inductive interference

Characteristics	Unit	1.4 mm
Conductor resistance, mean value	Ω/km	11.7
Resistance unbalance	%	2
Insulation resistance	GΩxkm	≥ 35
Dielectric strength at 50 Hz, 1 min		
core/core	V _{rms}	2100
core/screen	V _{rms}	2500
Reduction factor at 50 Hz, 110-320 V/km	r _k	≤ 0.3


CCPSSP-FR0.3

	n x 1 x 1.4 mm				
No. of cores	Outer diameter	Cable weight	Standard length		
	[mm]	[kg/km]	[m]		
2	16.5	530	1000		
4	17.5	610	1000		
7	19.0	720	1000		
9	22.7	915	1000		
12	23.2	977	1000		
19	25.2	1185	1000		
27	28.1	1440	1000		
37	31.4	1755	1000		
48	34.2	2065	1000		

Railway Cables - Spain

Signalling Cable

CCPSSP-FR0.3 n x 4 x 0.9 mm / 1.4 mm

APPLICATION

For railway signalling applications, for example axle counter, level crossing gates and similar wayside equipment. Protected against inductive interferences, for example on AC electrifed railroads.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 0.9 mm or 1.4 mm of diameter

Insulation

PE, color code see specification adif

Twisting

Cores twisted to star quads, star quads laid up in layers

Screen

Corrugated copper tape with overlap, longitudinally applied

Inner sheath PE, black

Armouring

Two layers of galvanized steel tape 0.5 or 0.8 mm, helically applied

Outer sheath PE, black

Notes

- Detailed data sheet available upon request.
- Optional in core stranded version.
- Optional in halogen free, flame retardant version as CCTSST-FR0.3.

- > Signalling cable acc. to E.T. 03.365.051.6, 03/2005 of adif
- > Star quad stranded, steel tape armoured
- > With protection against inductive interference

Characteristics	Unit	0.9 mm	1.4 mm
Conductor resistance, mean value	Ω/km	28.5	11.7
Resistance unbalance	%	1	1
Insulation resistance	GΩxkm	≥ 25	≥ 25
Mutual capacitance at 800 Hz	nF/km	≤ 41	≤ 45
Capacitance unbalance at 800 Hz			
k, mean/individual value	pF/460 m	≤ 35 / 250	≤ 35 / 250
k ₉₋₁₂ mean/individual value	pF/460 m	≤ 35 / 250	≤ 35 / 250
e _{a1/2} mean/individual value	pF/460 m	≤ 320 / 1200	≤ 320 / 1200
Attenuation at 1 kHz	dB/km	≤ 0.7	≤ 0.46
at 10 kHz	dB/km	≤ 1.6	≤ 0.85
at 30 kHz	dB/km	≤ 2.1	≤ 1.3
Dielectric strength at 50 Hz, 1 min			
core/core	V _{rms}	2100	2100
core/screen	V _{rms}	2500	2500
Reduction factor at 50 Hz, 110-320 V/km	r _k	≤ 0.3	≤ 0.3


CCPSSP-FR0.3

	n x 4 x 0.9 mm				n x 4 x 1.4 mm	
No. of quads	Outer diameter	Cable weight	Standard length	Outer diameter	Cable weight	Standard length
	[mm]	[kg/km]	[m]	[mm]	[kg/km]	[m]
1	17.0	590	1000	19.0	740	1000
З	21.5	830	1000	27.0	1260	1000
5	24.5	990	1000	31.0	1620	1000
7	26.0	1120	1000	34.0	1850	1000
10	29.0	1340	1000	39.0	2330	1000
14	32.5	1620	1000	43.0	2815	500
19	36.0	1950	1000	47.0	3470	500
27	-	-	-	54.0	4460	500

Railway Cables - Italy

Signalling Cable

UG70G7KNR - RG70G7KNR n x 1 / 2.5 / 4 / 6 / 10 / 16 / 25 mm²

APPLICATION

For railway signalling applications, wiring of light signals, point machines and similar wayside equipment. For external circuits.

CONSTRUCTION

Conductor

Bare copper conductor, soft annealed,

- solid, class 1 for \leq 6 mm² (UG70G7KNR) and
- stranded class 2 for ≥ 10 mm² (RG70G7KNR) of cross section

Insulation

HEPR, high module rubber based elastomeric compound crosslinked by vulcanization, color code see CEI-UNEL 0722

Twisting

Cores laid up in layers

Inner Covering

HEPR, high module rubber based elastomeric compound crosslinked by vulcanization

Inner sheath

Elastomeric compound crosslinked by vulcanization plus separation tape

Armouring

Two layers of galvanized steel tape 0.2, helically applied

Outer sheath

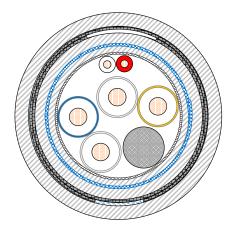
PVC, black

Notes

- Detailed data sheet available upon request.
- Optional in non-armoured version.
- Optional in LSOH version for internal use acc. to specification IS 409.

> Signalling cable acc. to STF DTCSTSSTB SF IS 06 200 Rev. E of RFI > Core stranded, steel tape armoured

Characteristics	Unit	1 mm²	2.5 mm ²	4 mm²	6 mm2	10 mm²	16 mm2	25 mm²
Conductor resistance	Ω/km	≤ 18.2	≤ 7.56	≤ 4.70	≤ 3.11	≤ 1.84	≤ 1.16	≤ 0.734
Insulation resistance	MΩxkm	≥ 1007	≥ 765	≥ 641	≥ 534	≥ 428	≥ 352	≥ 363
Operating voltage U _o / U	V	450 / 750						
Dielectric strength at 50 Hz	V _{rms}	3000						


UG70G7KNR - RG70G7KNR

Dimension	Wall thickness inner sheath [mm]	Wall thickness outer sheath [mm]	Outer diameter max. [mm]	Cable weight [kg/km]
4 x 1 mm²	1.4	1.8	17.8	380
8 x 1 mm²	1.6	1.8	21.5	500
16 x 1 mm²	1.8	1.8	25.0	730
2 x 2.5 mm²	1.6	1.8	18.5	410
4 x 2.5 mm²	1.6	1.8	19.9	500
2 x 4 mm²	1.6	1.8	19.5	470
2 x 6 mm²	1.6	1.8	20.5	560
3 x 4 mm²	1.6	1.8	20.5	520
3 x 6 mm²	1.6	1.8	21.1	630
3 x 10 mm²	2.0	1.8	25.0	840
3 x 16 mm²	2.0	1.8	26.6	1070
3 x 25 mm²	2.0	1.9	30.4	1480

Railway Cables - Italy

Signalling Cable

DIGICODE Cable 2 x 2 x 1.4 mm + 1 x 2 x 0.6 mm

APPLICATION

For railway signalling applications and transmission of track circuit digicode signals up to 30 kHz. For indoor and outdoor use.

CONSTRUCTION

Conductor

Bare solid copper conductor, soft annealed,

- 0.6 mm of diameter for service pair and
- 1.4 mm of diameter for transmission pairs

Insulation

- Service pair: PE, colours red/white
- Transmission pair: Foam-skin-PE, colours white/blue and white/orange

Twisting

Cores twisted to pairs

Inner sheath

PE, black

Moisture barrier sheath

Laminated sheath made of aluminium tape 0.2 mm, both side copolymer coated, bonded with

Separation sheath

LSZH-FR PE, green

Armouring

Two layers of galvanized steel tape, helically applied

Outer sheath

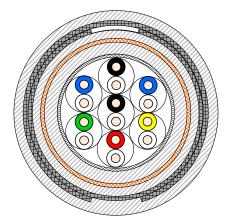
LSZH-FR PE, green

Notes

- Detailed data sheet available upon request.
- Optional in non-armoured version.
- Optional in PE for external use.

- > Signalling cable for transmission of digicode signals> Transmission pairs and sevice pairs included
- > Pair stranded, steel tape armoured

Characteristics	Unit	Transmission pair	Service pair
Conductor diameter	mm	1.4 mm	0.6 mm
Conductor resistance	Ω/km	≤ 12.1	-
Insulation resistance	MΩxkm	> 5000	> 5000
Mutual capacitance	nF/km	≤ 45	50
Characteristic impedance (nom.) at 1 MHz	Ω	110 ± 10	-
Near-end crosstalk attenuation			
at 4.1 kHz	dB	> 54	-
at 20.7 kHz	dB	> 42	-
Far-end crosstalk attenuation			
at 4.1 kHz	dB/km	> 59	-
at 20.7 kHz	dB/km	> 48	-
Attenuation			
at 2.1 kHz	dB/km	≤ 0.64	-
at 4.1 kHz	dB/km	≤ 0.76	-
at 9.5 kHz	dB/km	≤ 1.05	-
at 20.7 kHz	dB/km	≤ 1.28	-
Rated voltage (between pair conductors)	V _{rms}	≤ 220	-
Rated current	A _{rms}	≤1	-
Dielectric strength at 50 Hz, 1 min			
core/core	V _{rms}	1000	1000
core/screen	V _{rms}	3000	3000


DIGICODE cable

Dimension	Wall thickness separation sheath [mm]	Wall thickness outer sheath [mm]	Outer diameter [mm]	Cable weight [kg/km]
1 x 2 x 1.4 mm + 1 x 2 x 0.6 mm	1.3	1.5	16.4	375
2 x 2 x 1.4 mm + 1 x 2 x 0.6 mm	1.3	1.5	19.3	500

Railway Cables - France

Signalling Cable

ZPAU n x 2 x 1 mm²

APPLICATION

For railway signalling applications, for example point machines, light signals, axle counter, level crossing gates and similar wayside equipment. Protected against inductive interferences, for example of on AC electrifed railroad.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 1 mm² of cross section

Insulation

PE, color code see specification SNCF

Twisting

Cores twisted to pairs, pairs laid up in layers

Inner sheath PE, black

Screen

Corrugated copper tape, longitudinally applied

Intermediate bedding PE, black

Armouring

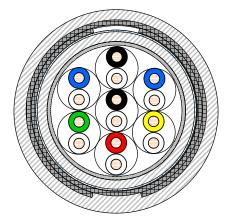
Two layers of high permeability steel tape 0.2 mm to 0.5 mm, helically applied

Outer sheath PVC, black

Notes

- > Signalling cable acc. to NF F 55-698 & CT445 of SNCF
- > Pair stranded, steel tape armoured
- > With protection against inductive interference

Characteristics	Unit	1 mm²
Conductor resistance	Ω/km	≤ 18.1
Insulation resistance	GΩxkm	≥ 5
Mutual capacitance at 800 Hz	nF/km	≤ 55
Capacitance unbalance at 800 Hz	pF/500 m	≤ 200
Characteristic impedance		
at 20 - 45 kHz	Ω	120 ± 10
at 45 - 80 kHz	Ω	115 ± 10
Attenuation		
at 20 - 45 kHz	dB/km	≤ 2.5
at 45 - 80 kHz	dB/km	≤ 3
Operating voltage AC / DV	V _{rms} / V	450/750
peak value AC	V _{rms}	900
Dielectric strength at 50 Hz, 3 min		
core/core	V _{rms}	3000
core/screen	V _{rms}	3000


ZPAU

	n x 2 x 1 mm²					
No. of pairs	Outer diameter	Cable weight	Standard length			
	[mm]	[kg/km]	[m]			
2	18.2	530	1000			
4	23.8	665	1000			
7	26.7	845	1000			
14	31.0	1200	1000			
21	35.5	1570	1000			
28	39.5	1910	500			
56	49.5	3100	500			

Railway Cables - France

Signalling Cable

ZPFU n x 2 x 1 mm²

APPLICATION

For railway signalling applications, for example point machines, light signals, axle counter, level crossing gates and similar wayside equipment.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 1 mm² of cross section

Insulation PE, color code see specification SNCF

Twisting Cores twisted to pairs, pairs laid up in layers

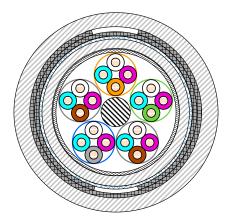
Inner bedding PE, black

Armouring Two layers of galvanized steel tape 0.15 to 0.5 mm, helically applied

Outer sheath PVC, black

Notes

> Signalling cable acc. to NF F 55-698 & CT445 of SNCF > Pair stranded, steel tape armoured


Characteristics	Unit	1 mm²
Conductor resistance	Ω/km	≤ 18.1
Insulation resistance	GΩxkm	≥ 5
Mutual capacitance at 800 Hz	nF/km	≤ 55
Capacitance unbalance at 800 Hz	pF/500 m	≤ 200
Characteristic impedance		
at 20 - 45 kHz	Ω	120 ± 10
at 45 - 80 kHz	Ω	115 ± 10
Attenuation		
at 20 - 45 kHz	dB/km	≤ 2.5
at 45 - 80 kHz	dB/km	≤ 3
Operating voltage AC / DV	V _{rms} / V	450/750
peak value AC	V _{rms}	900
Dielectric strength at 50 Hz, 3 min		
core/core	V _{rms}	3000
core/screen	V _{rms}	3000

ZPFU

	n x 2 x 1 mm²					
No. of pairs	Outer diameter	Cable weight	Standard length			
	[mm]	[kg/km]	[m]			
1	12.5	160	1000			
2	13.7	235	1000			
4	18.6	350	1000			
7	22.4	670	1000			
14	28.0	1000	1000			
21	32.4	1360	1000			
28	36.5	1660	500			
56	47.8	2900	500			

Signalling Cable

Sw-CLT n x 4 x 1.5 mm / 2.2 mm

APPLICATION

In railway signalling applications for transmission of low frequent signal through symmetric circuits, for example axle counter devices and similar wayside equipment.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 1.5 mm or 2.2 mm of diameter

Insulation PE, coloured

Twisting

Cores twisted to star quads, quads laid up in layers

Inner sheath PE, black

Armouring

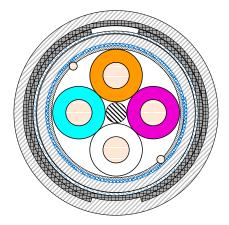
Two layers of galvanized steel tape 0.15 mm, helically applied

Outer sheath PE, black

Notes

> Signalling cable acc. to I-PS 3001.82.1000 of SBB> Star quad stranded, steel tape armoured

Characteristics	Unit	1.5 mm	2.2 mm
Conductor loop resistance	Ω/km	≤ 20.9	≤ 10.0
Insulation resistance	GΩxkm	≥ 10	≥ 10
Mutual capacitance at 800 Hz	nF/km	≤ 52	≤ 60
Capacitance unbalance at 800 Hz			
k ₁	pF/km	≤ 400	≤ 400
k ₉₋₁₂	pF/km	≤ 400	≤ 400
e _{a1/2}	pF/km	≤ 650	≤ 650
Operating voltage (16.7 Hz / DC)	V _{rms} /V	500/800	500/800
Test voltage at 50 Hz - 1 min			
core/core	V _{rms}	2000	2000
core/armour	V _{rms}	4000	4000


Sw-CLT

	n x 4 x 1.5 mm			n x 4 x 2.2 mm		
No. of quads	Outer diameter	Cable weight	Standard length	Outer diameter	Cable weight	Standard length
	[mm]	[kg/km]	[m]	[mm]	[kg/km]	[m]
1	15.5	240	2000	16.5	360	2000
З	23.5	560	1000	28.0	890	1000
5	28.5	800	1000	33.5	1320	1000
10	36.0	1390	1000	44.5	2370	500
15	41.5	1920	1000	51.5	3380	500
20	46.5	2450	1000	58.5	4440	500
25	52.5	3050	1000	66.5	5470	500
30	55.0	3490	1000	68.0	6410	500

Railway Cables - Switzerland

Balise Signalling Cable

PE-ALT-CLT Balise Cable 1 x 4 x 1.53 mm

APPLICATION

For railway safety equipment, used for train detection according to ETCS (European Train Control System) technology.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 1.53 mm of diameter

Insulation PE, color code circuit 1: white/orange, circuit 2: turquoise/violet

Twisting Cores twisted to one star quad

Moisture barrier sheath Two tinned copper drain wires 0.8 mm, laminated sheath made of aluminium tape, one side copolymer coated, bonded with

Inner sheath PE, black

Armouring

Two layers of galvanized steel tape 0.2 mm, helically applied

Outer sheath PE, black

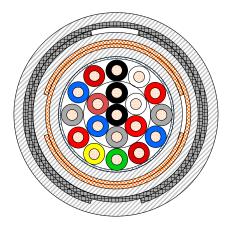
Notes

- Detailed data sheet available upon request.
- Optional in halogen free, flame retardant version as PE-ALT-CLN.

> Balise cable acc. to I-AT-FS 3001.52.2000 of SBB

> Star quad stranded, steel tape armoured

Characteristics	Unit	1.53 mm
Conductor loop resistance	Ω/km	≤ 19.8
Insulation resistance	kΩxkm	≥ 10000
Mutual capacitance at 800 - 1000 Hz	nF/km	42.3 ± 15 %
Capacitance unbalance at 800 - 1000 Hz		
k ₁	pF/km	≤ 240
ea	pF/km	≤ 640
Characteristic impedance at		
560/800 kHz	Ω	120 ± 10 %
1800 kHz	Ω	120 ± 5 %
Attenuation at		
8.82 kHz	dB/100 m	≤ 0.08
560 kHz	dB/100 m	≤ 0.4
800 kHz	dB/100 m	≤ 0.5
1800 kHz	dB/100 m	≤ 0.8
Dielectric strength at 50 Hz, 2 min		
core/core	V _{rms}	2500
core/screen	V _{rms}	2500


PE-ALT-CLT Balise Cable

	n x 4 x 1.53 mm				
No. of quads	Outer diameter	Cable weight	Standard length		
	[mm]	[kg/km]	[m]		
1	18.0	390	2000		

Railway Cables - Turkey

Signalling Cable

AJ-2Y2Y(St)2YB2Y-FR0.3 n x 1 x 0.9 mm / 1.4 mm

APPLICATION

For railway signalling applications, wiring of light signals, point machines and similar wayside equipment. Protected against inductive interferences, for example on AC electrifed railroads.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 0.9 mm or 1.4 mm of diameter

Insulation

PE, color code by layer: starter core black, direction core white, all other cores red, grey, blue, brown, green, yellow - repetitive

Twisting Cores laid up in layers

Inner sheath PE, black

Screen

Two layers of copper tape, helically applied with overlap

Intermediate sheath PE, black

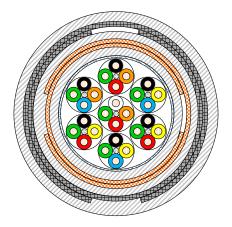
Armouring Two layers of galvanized steel tape 0.5 mm, helically applied

Outer sheath PE, black

Notes

- > Signalling cable acc. to specification of TCDD
- > Core stranded, steel tape armoured
- > With protection against inductive interference

Characteristics	Unit	0.9 mm	1.4 mm
Conductor resistance	Ω/km	≤ 28.8	≤ 11.9
Insulation resistance	GΩxkm	≥ 35	≥ 35
Dielectric strength at 50 Hz, 5 min			
core/core	V _{rms}	3000	3000
core/armouring	V _{rms}	3000	3000
Reduction factor at 50 Hz, 100-350 V/km	r _k	≤ 0.3	≤ 0.3


AJ-2Y2Y(St)2YB2Y-FR0.3

		n x 1 x 0.9 mm			n x 1 x 1.4 mm	
No. of cores	Outer diameter	Cable weight	Standard length	Outer diameter	Cable weight	Standard length
	[mm]	[kg/km]	[m]	[mm]	[kg/km]	[m]
4	20	610	1000	21	640	1000
7	-	-	-	22	770	1000
8	21	735	1000	-	-	-
9	-	-	-	25	935	1000
10	24	870	1000	-	-	-
12	-	-	-	26	1025	1000
19	-	-	-	29	1270	1000
20	26	1050	1000	-	-	-
27	-	-	-	32	1565	1000
30	30	1300	1000	-	-	-
37	-	-	-	35	1875	500
40	32	1490	1000	-	-	-
48	-	-	-	39	2245	500
60	37	1880	1000	-	-	-

Railway Cables - Turkey

Signalling Cable

AJ-2Y2Y(St)2YB2Y-FR0.3 n x 4 x 1.4 mm

APPLICATION

For railway signalling applications, for example axle counter, level crossing gates and similar wayside equipment. Protected against inductive interferences, for example on AC electrifed railroads.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 1.4 mm of diameter

Insulation PE, color code see specification TCDD

Twisting

Cores twisted to star quads, star quads laid up in layers

Inner sheath PE, black

Screen

Two layers of copper tape, helically applied with overlap

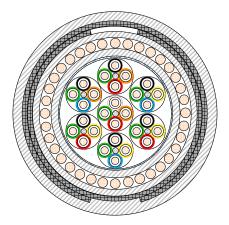
Intermediate sheath PE, black

Armouring Two layers of galvanized steel tape 0.5 mm, helically applied

Outer sheath PE, black

Notes

- > Signalling cable acc. to specifiation of TCDD
- > Star quad stranded, steel tape armoured
- > With protection against inductive interference


Characteristics	Unit	1.4 mm
Conductor resistance, mean value	Ω/km	≤ 11.9
Insulation resistance	GΩxkm	≥ 35
Mutual capacitance at 800 Hz (mean)	nF/km	≤ 41
Mutual capacitance at 800 Hz (max.)	nF/km	≤ 48
Capacitance unbalance at 800 Hz		
k, max. individual value	pF/460 m	≤ 250
k ₉₋₁₂ max. individual value	pF/460 m	≤ 250
e _{a1/2} max. individual value	pF/460 m	≤ 1200
Attenuation at 1 kHz	dB/km	≤ 0.46
at 10 kHz	dB/km	≤ 0.85
Dielectric strength at 50 Hz, 5 min		
core/core	V _{rms}	3000
core/armouring	V _{rms}	3000
Reduction factor at 50 Hz, 100-350 V/km	r _k	≤ 0.3

AJ-2Y2Y(St)2YB2Y-FR0.3

	n x 4 x 1.4 mm				
No. of quads	Outer diameter	Cable weight	Standard length		
	[mm]	[kg/km]	[m]		
1	20	650	1000		
3	28	1150	500		
5	32	1490	500		
7	34	1730	500		
9	40	2170	500		
11	43	2410	500		
12	43	2480	500		

Communication Cable

AJ-02YS2YD2YB2Y-FR0.1 n x 4 x 0.9 mm

APPLICATION

For railway communication applications. Protected against inductive interferences, for example on AC electrifed railroads.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 0.9 mm or diameter

Insulation PE, color code see specification TCDD

Twisting Cores twisted to star quads, star quads laid up in layers

Inner sheath PE, black

Screen Concentrically positioned copper wires

Intermediate sheath PE, black

Armouring

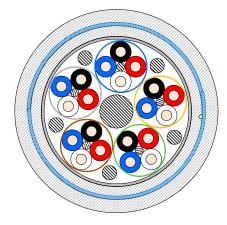
Two layers of galvanized steel tape 0.8 mm, helically applied

Outer sheath PE, black

Notes

- > Communication cable acc. to specifiation of TCDD
- > Star quad stranded, steel tape armoured
- > With protection against inductive interference

Characteristics	Unit	0.9 mm
Conductor resistance	Ω/km	27.5 ± 1
Resistance difference	%	≤ 2
Insulation resistance	GΩxkm	≥ 35
Mutual capacitance at 800 Hz (mean)	nF/km	≤ 38
Mutual capacitance at 800 Hz (max.)	nF/km	≤ 45
Capacitance unbalance at 800 Hz		
k, mean/max. individual value	pF/460 m	≤ 35 / 250
k ₉₋₁₂ mean/max. individual value	pF/460 m	≤ 35 / 250
e _{a1/2} mean/max. individual value	pF/460 m	≤ 320 / 1200
Attenuation at 1 kHz	dB/km	≤ 0.62
at 10 kHz	dB/km	≤ 1.5
at 30 kHz	dB/km	≤ 2.0
NEXT at 30 kHz	dB	≥ 65
Dielectric strength at 50 Hz, 5 min		
core/core	V _{rms}	500
core/armouring	V _{rms}	2100
Reduction factor at 50 Hz		
11 V/km	r _k	≤ 0.19
20 V/km	r _k	≤ 0.16
50 V/km	r _k	≤ 0.11
110 V/km	r _k	≤ 0.08
200 V/km	r _k	≤ 0.05
300 V/km	r _k	≤ 0.05
500 V/km	r _k	≤ 0.07


AJ-02YS2YD2YB2Y-FR0.1

	n x 4 x 0.9 mm				
No. of quads	Outer diameter	Cable weight	Standard length		
	[mm]	[kg/km]	[m]		
1	27.5	1520	500		
2	31.5	1880	500		
3	31.5	1900	500		
5	38	2530	500		
12	46	3420	500		

Railway Cables - Australia

Axle Counter Signalling Cable

A-2YTF2Y(L)2Y4Y n x 4 x 0.9 mm

APPLICATION

In railway signalling applications for transmission of low frequent signal through symmetric circuits, for example AzLM axle counter applications and similar wayside equipment. Insect and termite resistant.

CONSTRUCTION

Conductor

Bare, solid copper conductor, soft annealed, 0.9 mm of diameter

Insulation

PE, red/white/blue/black per quad, and additional coloured helix for identification of quads

Twisting

Cores twisted to star quads, quads laid up in layers

Filling

Special filling compound

Inner sheath PE, black

Moisture barrier sheath

Laminated sheath made of aluminium tape 0.15 mm, one side copolymer coated, bonded with

Intermediate sheath PE, black

i L, black

Outer sheath Nylon, UV, insect and termite resistant plus blue sacrificial jacket

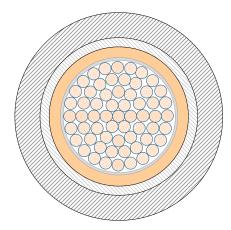
Notes

- Detailed data sheet available upon request.

≥ 7.5 x D

Termite resistant

- > Signalling cable based on PH 416.0115 V1.1 of Deutsche Bahn
- > Longitudinally watertight
- > Star quad stranded, PA outer sheath (insect and termite resistant)


Characteristics	Unit	0.9 mm
Conductor resistance	Ω/km	≤ 27.9
Insulation resistance	GΩxkm	≥ 10
Mutual capacitance at 800 Hz	nF/km	≤ 50
Test voltage at 50 Hz - 2 min		
core/core	V _{rms}	2500
core/screen	V _{rms}	2500

A-2YTF2Y(L)2Y4Y

	n x 4 x 0.9 mm (H45)				
No. of quads	Outer diameter	Cable weight	Standard length		
	[mm]	[kg/km]	[m]		
1	13	145	2000		
5	23	425	1000		

Track Feeder Cable

EPROTENAX SUBAQUA AT 1.8/3 kV 1 x 35 / 50 / 185 / 240 / 400 mm²

APPLICATION

Track feeder cable, developed for Singapore metro. Suitable for installation and use underwater. Halogen free and flame retardant with excellent mechanical characteristics.

CONSTRUCTION

Conductor Watertight bare copper conductor class 2, soft annealed

Separator Polyester tape, helically applied

Insulation Cross-linked ethylene propylene rubber HEPR, natural colour

Inner sheath LSOH compound, flame retardant

Outer sheath Afumex LSOH compound, anti-termite, black

Notes

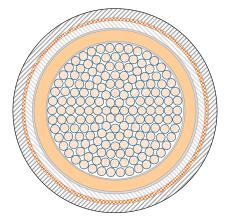
- Detailed data sheet available upon request.

≥ 10 x D

≥ 5 x D

EN/IEC 60332-3

- > Track feeder cable based on IEC 60502-1
- > Single core design
- > Excellent mechanical characteristics, termite resistant


Characteristics	Unit	Value
Conductor resistance	Ω/km	see table below
Max. continuous conductor temperature	°C	≤ 90
Operating voltage U _o / U	V	1800 / 3000
Voltage test AC	kV/5 min	6.5

Eprotenax Subaqua AT 1.8/3 kV

Cross- section [mm²]	Conductor resistance [Ω/km]	Conductor diameter [mm]	Wall thickness insulation [mm]	Wall thickness inner sheath [mm]	Wall thickness outer sheath [mm]	Outer diameter [mm]	Cable weight [kg/km]
1 x 35	0.524	7.0	2.2	1.0	2.0	21.0 ± 1.2	730
1 x 50	0.387	8.2	2.2	1.5	2.5	24.0 ± 1.2	900
1 x 185	0.100	16.2	2.4	1.5	2.5	32.4 ± 1.3	2345
1 x 240	0.0754	18.3	2.4	1.5	2.5	34.6 ± 1.4	2945
1 x 400	0.0470	23.1	2.6	2.0	2.5	40.9 ± 1.5	4515

Track Feeder Cable

CU/EPR/WBT/DBT/LSOH 1.8/3 kV 1 x 800 mm²

APPLICATION

Track feeder cable, halogen free and flame retardant. Excellent mechanical characteristics.

CONSTRUCTION

Conductor Tinned copper conductor class 2, soft annealed

Separator Polyester tape, helically applied

Insulation Cross-linked ethylene propylene rubber EPR, natural colour

Water blocking Water blocking tape, helically applied

Inner sheath LSOH compound

Armouring Brass copper tape

Outer sheath Afumex LSOH compound, ordinary oil-resistant, black

Notes

- Detailed data sheet available upon request.

25°C; + 70°C

- > Track feeder cable based on IEC 60502-1
- > Single core design, armoured
- > Excellent mechanical characteristics

Characteristics	Unit	800 mm²
Conductor resistance	Ω/km	0.0224
Max. continuous conductor temperature	°C	≤ 90
Operating voltage U _o / U	V	1800 / 3000
Voltage test AC	kV/5 min	6.5

CU/EPR/WBT/DBT/LSOH 1.8/3 kV

Cross-	Conductor	Outer	Cable	Standard
section	resistance	diameter	weight	length
[mm²]	[Ω/km]	[mm]	[kg/km]	[m]
1 x 800	0.0224	50	8620	

GILA[®]-Duct

GILA[®]-Duct Galvanized InterLocking Armor

APPLICATION

GILA-Duct[®] is a specially manufactured HPDE duct that is used where additional mechanical protection of cable is of primary importance. Suitable for both aerial and buried installations, this construction combines the protection of a metal armor with the low cable pulling friction and the low dielectric constant of HDPE. GILA-Duct can be supplied empty, with a pull line, or with Draka cables pre-installed. It is shipped with sealed ends to prevent entry of moisture and other contaminants. Conductors available include THHN/THWN, EPR-USE, XHHW-2, RHH/RHW-2, XLP-USE, L-824 B or C airport lighting cable, fiber optic cable, paired communication/coax cables, aluminum conductors and medium voltage cables. Tests have shown that the average lightning resistivity of GILA-Duct is up to 200kV.

CONSTRUCTION

Inner duct

Black high density polethylene (HDPE) meeting ASTM 3350 requirements with TC-7 wall thickness

Armouring

Galvanized steel tape 25 mils thick, interlocked and helically applied

Jacket

60 mils thick HDPE meeting ASTM 3350, nominally orange or black but can be coloured to customer's specification

Notes

- Detailed data sheet available upon request.

- > PE conduit acc. to ASTM D3485
- > Galvanized steel tape, interlocked
- > Excellent mechanical characteristics

GILA®-Duct

Duct trade size [in/mm]	Nominal inner diameter [mm]	Nominal outside diameter [mm]	Nominal weight [kg/km]	Minimum bending radius [mm]	Maximum pulling tension [N]
0.75 / 19.1	23.1	35.8	1000	440	n/a
1.00 / 25.4	29.2	44.2	1380	540	6360
1.25 / 31.8	36.6	53.3	1775	640	7640
1.50 / 38.1	41.8	59.4	2050	720	15430
2.00 / 50.8	52.6	69.9	2660	840	19130
3.00 / 76.2	77.5	104	4400	1250	27260

SPECIFICATIONS and RATINGS

- ASTM D3485 Standard specification for smooth wall coilable polyethylene (PE) conduit (duct) for preassembled wire and cable
- HDPE meets the requirements (Class C, Grade PE33) of ASTM D3350 Standard specification for polyethylene plastics pipe and fittings material

RATING: The duct is composed of black (other colors available), high-density polyethylene meeting the requirements (Class C, Grade PE33) of ASTM 3350 – Standard Specification for Polyethylene Plastics Pipe and Fittings Material.

Cables with reduction factor

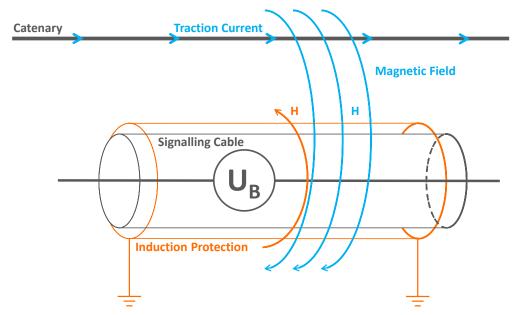
On electrified tracks which are operated using alternating current or under high-voltage power lines, parallel laid railway cables are exposed at the same time to the influence of electromagnetic fields. These electromagnetic fields induce current in the cables, which can lead to disturbances and destruction of the equipment connected to them as well as present a hazard to life and limb. In order to reduce this influence to a non-hazardous level, the cables are provided with a metallic shield according to their cross-section. This shield has to be earthed on both sides of the cable.

The measure of quality used to shield cables in railway applications is referred to as the reduction factor. The reduction factor is the ratio of induced tension with shielding to the induced tension without shielding. A reduction factor of 1 would mean "no shielding effect". A reduction factor of 0.5, for example, would mean a reduction of the induced tension by one half.

The effect of shielding of the materials used (copper, steel, aluminium, etc.) is dependent on the conducting cross-section of shielding as well as the frequency of the interfering signal.

Depending upon the local circumstances, the cable design and hence the resultant reduction factor can be optimised to best match the expected field strength along the railway track. A typical description for the request for a cable protected against inductive interference shall include disturbing frequency and field intensity as well as the requested reduction factor. For example:

- Reduction factor < 0.5 at 16.7 Hz in the range of 80 150 V/km or
- Reduction factor < 0.3 at 50 Hz in the range of 80 250 V/km.


The tension induced in the cable increases with the length the cable is exposed to the electrical field. A cable which is exposed over a length of 2000 m to the field can require a lower (better) reduction factor than the same cable, which is only exposed to the induced field over a length of 1000 m.

The calculation of the actually required reduction factor is very complicated and depends on a multitude of different parameters:

- Distance of the cable to be shielded from the interfering cable (overhead line...),
- Type of installation (underground, in conduits, on the ground...),
- Characteristics of the ground,
- etc.

A respective calculation of the required reduction factor can only be carried out by experts. The cable manufacturer then develops the correct cable design based on the given factors.

As a supplier of cables for railway applications and development partners of well-known European railway operators of long standing, Prysmian offers an extensive portfolio of different cables with reduction factor. Upon request we shall be pleased to develop the right cable design for a customer's purposes.

Picture: Magnetic field compensation by inductive protection

Picture: Cable AJ-2Y(L)2YDB2Y 10x4x1.4 mm S (H45) rk 600 of Deutsche Bahn with protection against inductive interference

Requirements for fire characteristics of cable installations in tunnels or stations

Prysmian provides a complete product range of cables and circuits for the railway infrastructure sector. We also take into consideration the special requirements needed for laying cables in closed environments.

Most railway infrastructure operators specify cables with a black polyethylene (PE) outer sheath for use in the open air. PE is extremely robust and resistant, has very good UV resistance due to the black colouring and guarantees a cable life of about 35 years. PE is halogen-free and burns with low smoke emissions without releasing toxic gases. In the open, such cable fires are rarely life-threatening, as escape routes are open in all directions.

The situation is, however, quite different in cable installations in tunnels: in this case one is confronted with narrow spaces, without a possibility to extract smoke and gases, darkness, and only a few escape routes. A fire in a tunnel can have disastrous consequences! The use of PE, which actually burns halogen free and has a low smoke producing potential, is not selfextinguishing, however. PE contributes to the further propagation of the fire. The fire can penetrate into adjacent rooms and cause more damage. Cables with PVC outer casings are no alternative, however, although PVC is flame retardant and is usually self-extinguishing. PVC burns producing dark soot and releases corrosive and toxic gases. In a very short time, the tunnel would be impassable and any persons inside would suffocate. An ideal material combines the advantages of PE and PVC: it is halogen free, produces little smoke, flame retardant and selfextinguishing. Such materials exist and are also manufactured, refined and improved in Prysmian's material laboratories.

Known halogen-containing materials are, for example, chloroprene rubber (CR), ethylene tetrafluoroethylene (ETFE), perfluoroethylene propylene (FEP) or polyvinyl chloride (PVC).

Halogen-free materials are, among others, silicone rubber (SIR), polyamide (PA), ethylene propylene polymers (EPR), thermoplastic elastomers (PE) or polyethylene (PE).

There are European and international standards regarding the unique and comparable classification of flammability properties of cables. We want to briefly introduce to you the most important test procedures.

Fire testing

EN/IEC 60332-1

(Tests on electric and optical fibre cables under fire conditions: test for vertical flame propagation for single insulated wire or cable)

The flame propagation is tested according to IEC 332-1 on a single cable. A vertical sample of cable about 600 mm in length is exposed to a flame for 60 s and/or 120 s in an area 100 mm above the lower end with a 1 kW Bunsen burner. After removing the burner, the flame must selfextinguish. The zones of the cable damaged by the flame should not reach to the upper end of the cable. The flaming time is dependant on the diameter of the cable.

Comparable tests are DIN VDE 0482-332-1-2, EN 50265-2-1, NF C 32-070 C2, BS 4066-1.

EN/IEC 60332-3

(Tests on electric and optical fibre cables under fire conditions: test for vertical flame spread of vertically mounted bunched wires or cables)

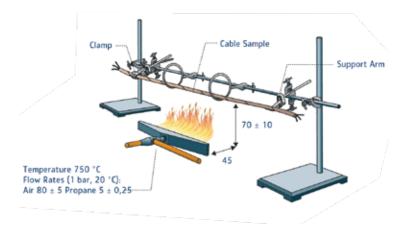
The test for the spread of the flame with an array of several cables, i.e. a bunch of cables, is normally carried out according to IEC 332-3 (EN 50266-2, test method A, B, C or D – for use of different volumes of non-metallic materials).

The test specimens, mounted in a vertical frame, are exposed to a flame over a length of 3600 mm starting in the lower section using a special burner with a high output. During and/or after exposure to the intensive flame for 20 and/or 40 minutes, the cables may not continue to burn to their upper end.

Comparable tests are DIN VDE 0482-266-2-4, EN 50266, NBN C30-004 Cat. F2, BS 4066-3.

IEC 331

(Cable with insulation integrity)


A horizontal cable sample is exposed to a flame over a width of 1200 mm with a flame temperature of at least 750 °C for a recommended duration of at least 90 minutes. The cable is connected up electrically and under tension. During flaming and a cooling down time of an additional 15 minutes, no short circuiting or interruption of the current may arise.

Comparable tests are EN 50200, EN 50263, NF C 32070 CR1, BS 6287.

DIN 4102 part 12

(Cable with functional integrity – system testing of cable and the cable mounting system)

This test is very extensive. As it is a test of the system which includes the cable and the cable mounting system, the product to be tested is completely walled into a closed space. The cables are connected up electrically and are kept under tension during the test. The entire room is set alight with a defined temperature unit curve. After at least 30 minutes flame exposure, neither shortcircuiting or interruption of circuit may arise. It is extremely difficult to pass the test, as the cable mounting system has a considerable influence on the result. Cable clips, ducts or conductors exert mechanical loads on the cable, as the material changes during flaming: cable ducts start to bend through the load exerted by the cable and the originally smooth cable suddenly hangs down at several points. This mechanical change of position of the burned cable can lead to interruption or short-circuiting.

IEC 61034

(Measurement of smoke density of cables burning under defined conditions)

A plastic sample is burned under controlled conditions. In this way, the light transmission through the combustion gases which arise is measured.

Comparable tests are DIN VDE 0482-286-1 and -2, NFX 10702, BS 7622-2.

IEC 60754-1

(Test on halogen acid gases evolved during combustion of materials from cables)

A plastic sample is burned under controlled conditions. In this way, the smoke gases are measured for their halogen content.

Comparable tests are DIN VDE 0482-267-2-1 and EN 50267-2, NF C 20454, BS 6425-1.

IEC 60754-2

(Test on acidity of gases evolved during combustion of materials from cables)

A plastic sample is burned under controlled conditions. In this way, the pH-value and the conductivity of the smoke gases are measured.

A comparable test is DIN VDE 0276-604.

With the exception of the small fire test according to EN/IEC 60332-1, the cable is normally destroyed during the flame test. Although no short-circuiting or interruptions should arise, it is difficult to speak about defined electrical values such as operating capacity or characteristic impedance. In this case we are talking about either: current flowing or not. This may in reality be adequate for loudspeaker announcements or sprinkler systems. Control and safety technology using electronic interlocking is during or after a cable fire, if at all, hardly still sensible and feasible. Under these circumstances, the need to maintain fire testing standards according to EN/IEC 60331 (insulation integrity) and/or DIN 4102 part 12 (functional integrity) makes little sense for railway signalling cables for electronic interlocking.

Construction Product Regulation

Since 01/07/2013, the "Construction Product Directive" (CPD) in the EU has been replaced by the "Construction Product Regulation" (CPR) and is thus valid law in all member states of the EU. The CPR and/ or the building product directive (BPVo) affects all cables which are intended for permanent installation in a building. Products have to fulfil requirements in terms of behaviour and/or resistance in the case of fire.

CPR itself does not define any performance requirements regarding the affected products. The definition of safety requirements remains the responsibility of the national authorities.

CPR has introduced binding performance requirements (Declaration of Performance, DoP) and the corresponding CE-mark for labelling the products. The cable's fire characteristics shall be marked in the future with a combination of different classes (The index "ca" stands for "cable"):

CPR classes are:	A_{ca} , $B1_{ca}$, $B2_{ca}$, C_{ca} , D_{ca} , E_{ca} , F_{ca}	(see table to the right)
Smoke classes are:	s1, s1a, s1b, s2, s3	(EN 50399/EN 61034-2)
Acidity classes are:	a1, a2, a3	(EN 60754-2)
Flaming droplets classes are:	d0, d1, d2	(EN 50399)

The CPR has no class or guideline for railway cables laid in exposed outdoor areas. These cables may continue to be designed, produced and installed as previously. For railway cables in tunnels or train stations, the relevant cable manufacturers associations recommend a classification according to the EU regulation (1303/2014), clause 4.2.2.4: "In case of fire, exposed cables shall have the characteristics of low flammability, low fire spread, low toxicity and low smoke density. These requirements are fulfilled when the cables fulfil as a minimum the requirements of classification B2_{ca}, s1a, a1, as per Commission Decision 2006/751/EC."

Prysmian Group will observe these obligations and, as far as they do not satisfy existing cable designs, will provide cables and products to the market with the corresponding properties.

Class	Test method(s)	Classification criteria	Additional classification	
A _{ca}	EN ISO 1716	PCS ≤ 2,0 MJ/kg and PCS ≤ 2,0 MJ/kg and		
B1 _{ca}	EN 50399 and	$FS \le 1.75 \text{ m and}$ THR1200s $\le 10 \text{ MJ and}$ Peak HRR $\le 20 \text{ kW and}$ FIGRA $\le 120 \text{ Ws-1}$	Smoke production and Flaming droplets/particles and Acidity	
	EN 50265-2-1	H ≤ 425 mm		
B2 _{ca}	EN 50399 and	$FS \le 1.5 m$; and THR1200s $\le 15 M$ J; and Peak HRR $\le 30 kW$; and FIGRA $\le 150 Ws-1$	Smoke production and Flaming droplets/particles and Acidity	
	EN 50265-2-1	H ≤ 425 mm		
C _{ca}	EN 50399 and	$FS \le 2.0 \text{ m}$; and THR1200s $\le 30 \text{ MJ}$; and Peak HRR $\le 60 \text{ kW}$; and FIGRA $\le 300 \text{ Ws}$ -	Smoke production and Flaming droplets/particles and Acidity	
	EN 50265-2-1	H ≤ 425 mm		
D _{ca}	EN 50399 and	THR1200s \leq 70 MJ; and Peak HRR \leq 400 kW; and FIGRA \leq 1300 Ws-1		
	EN 50265-2-1	H ≤ 425 mm	1	
E _{ca}	EN 50265-2-1	H ≤ 425 mm		
F _{ca}	no performance determined			

Table: Overview of the CPR classifications

Transport and storage of cable drums

Even if cable and drum look very strong, there are certain rules to follow to avoid damage of the cable and an accompanying impairment of mechancial and electrical characteristics.

Transport and storage of cable drum

It is possible to store cable drums outdoors. When storage has occurred in heated rooms, a minimum 24-hour acclimatisation period must be observed before installation (possible condensation build-up in the cable!).

For outdoor storage the ground must be even and clean. Stones or bumps in the ground should be removed or smoothed out. Damage to the wound goods/cable should be avoided at all costs.

Cables should be secured against accidental rolling away. Under no circumstances should the drum flange of neighbouring cables touch any wound goods.

Cable drums should always be stored and transported standing on both flanges.

They should not be pushed along the ground standing on the flanges. It is possible that the strength of the cable drum would then no longer be guaranteed.

Observe the rolling direction. The arrow printed on the drum flange indicates the rolling direction so that the wound goods do not become loose.

Always uncoil the cable at a tangent, never over the flange, since the torsion thus resulting would damage the cable and laying would not be possible.

Cable ends

Finally it remains for us to point out the necessity of having faultless cable ends. Pressure-tight and impermeable cable ends are particularly essential for cables which are not longitudinally water-proof, as well as for cables which are insulated with paper, cellular-PE and foam-skin-PE. Carelessness in this area can lead to moisture penetration which is accompanied by a drastic deterioration in the electrical transmission rate. Power failures and expensive replacement work are the result. Pressure-tight and impermeable cable ends can be achieved, for example, through the use of synthetic sealing resin or compressed air sealing stoppers.

Important physical characteristics

Temperature range

The temperature range of the cable is of great importance for both the user and fitter. After all the cable is meant to function equally well in cold and hot temperatures. It is particularly during the fitting process that powerful mechanical forces act on the cable. The plastic used serves as the limiting element for the possible temperature range. At overly warm temperatures the plastic becomes very soft and can change into a thermoplastic state (up to melting point), which causes irreversible changes in the cable.

At very cold temperatures, however, the material stiffens and becomes hard and inflexible. Here, too, irreparable damage can occur.

Tears in the sheath allow dampness and moisture in and impair the transmission rate. Details about the permissible temperature range during laying and use (following successful fitting) can be found in the information sheets of the cable manufacturer. Since the mechanical strain on the cable in its laid form is significantly less, the permissible temperature range is greater than the range valid for the installation period.

Bending radius

Regarding the bending radius we distinguish between multiple and single bending (shaping into the final position).

Multiple bending occurs mainly during the laying process. Cables are laid under tension around deflector rolls. The particular stress of multiple bending lies in the alternating stress on the materials, which can be stretched several times as well as compressed during the laying process. To prevent permanent damage there are prescribed minimum bending radii of, for example, 10 x cable external diameter for multiple bending.

The stress on the material during final bending is not characterised by alternating stress. The cable is bent into form a final time and stays in this position for the duration of its use. The minimum bending radius in this case is, for example, 7.5 x cable external diameter. During final bending the cable can, therefore, be bent more tightly.

Exact minimum bending radii for specific cables can be found in the information sheets of the cable manufacturer.

Tension

During laying of the cable particular attention must be paid to the maximum possible tension. The cable is very quickly damaged by the use of too much force and must then be replaced. The maximum possible tension depends in the first place on the overall cross section and the tensile strength of the conducting materials used.

For cables with steel tape or copper wire spiral armouring it is the internal copper conductors alone which determine the maximum tension! The armouring has no influence on the maximum tension or can possibly reduce it through additional weight. For armouring with steel or steel profile wires, however, the tension is determined solely by the steel and steel profile wires.

Cable weight

The cable weight of larger cable dimensions can take weights of up to more than 10 t/km (without the reel!).

Certifications and compliance

Certifications of Railway and Infrastructure Authorities

Being a very complex system with a high safety integrity level, railway products are subject to detailed requirements and strong supervision. Many railway infrastructure operators issued dedicated cable specifications which require homologation and frequent auditing. Prysmian Railway Cables are designed and produced according to a number of railway cables standards, like DB, SBB, ÖBB, SNCF, TCDD, ADIF/ RENFE, RFI, RATP and many more in Europe and around the globe. High quality manufacturing processes, many decades of experience in cable design and engineering as well as intense testing procedures guarantee state-of-the-art cable products and satisfied customers worldwide.

REACH (Registration, Evaluation and Authorisation of Chemicals)

Adopted on December 18th, 2006, the Regulation of the European Parliament and the European Union Council, modernized the European legislation regarding chemical substances, and set up a unique integrated system of chemical substances in the European Union. Its objective is to improve the protection of the human health and of the environment, while maintaining the European chemical industry's competitiveness and strengthening its spirit of innovation. All Prysmian railway cables are REACH compliant.

RoHS (Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment)

The RoHS directive aims at restricting the use of certain dangerous substances commonly used in electric and electronic equipment (EEE). Cables concerned by this directive are any cables rated below 250V, which function is the connection or the extension of an EEE to electrical outlet or the connection of two or more EEE to each other. All Prysmian railway cables are RoHS compliant.

Management Systems

- Quality Management System EN ISO 9001:2008
- Environmental Management System EN ISO 14001:2005
- Energy Management System EN ISO 50001:2011

Our responsibilities

Social Responsibility

Within the social dimension of its business, the Prysmian Group recognises its commitment and responsibility towards the persons who work as part of the Organisation, as well as those who form the local communities in the territories in which the Group is active. Accordingly, consistent with its values, Prysmian constantly seeks to ensure the personal and professional satisfaction of its human resources, and to communicate with and involve local populations, in order to generate value for these important categories of stakeholder.

Environmental responsibility

The Group's commitment to safeguarding the environment and conserving natural resources is expressed not only by the intrinsic characteristics of our products, but also by how our production systems are managed. In particular, the prevention and reduction of their environmental impact is achieved, for example, by the efficient use of natural resources, the optimisation of logistics flows and the responsible management of waste.

During 2015, HSE further consolidated its activities at various levels within the Group (corporate, country or geographical area, business unit, production unit), centralising activities and coordinating the work of the local HSE functions. Group policies for Health, Safety and Environment, as well as the related Operating Procedures and Technical Standards, have been adopted and applied at operating unit level. The HSE function, with support from the Group audit team, periodically checks the effectiveness and proper application of the HSE rules at local level.

The aspects monitored by HSE using indicators include compliance with health and safety at work standards, energy consumption, waste management, water usage and greenhouse gas emissions. In particular, with reference to the greenhouse gas emissions, the Group has begun to collect energy consumption data in order to track both "direct" emissions (deriving from production processes) and "indirect" emissions (deriving from the energy purchased). This system of monitoring and reporting enabled the Group to participate in 2015, once again, in the Carbon Disclosure Project (CDP), which seeks to contribute to the pursuit of the objectives agreed in the Kyoto Protocol regarding the global reduction of greenhouse gas emissions

Product responsibility

Quality and innovation are the hallmarks of Prysmian's approach, both in sectors where the level of technology, the ability to innovate constantly and the commitment to offering high value-added services together establish a differentiated competitive positioning, and in those sectors where products are more standardised, such as medium and low-voltage cables. The Group applies a customer-centric approach, reflecting an ability to anticipate and satisfy the needs of customers with the maximum possible attention.

References

Prysmian and Draka have been supplying the railway industry for many decades. We supply all renowned European railway infrastructure companies, often as part of long-term master agreements.

The following excerpt of our success records shall give you an idea about our global presence. Many more projects have been realized in the recent years, in many more countries.

There is always a Prysmian office close to you.

Australia:	QueenslandRail, conversion to axle counter detection technology
Egypt:	Cairo – Alexandria line
Bulgaria:	Plovdiv-Bourgas line
Chile:	Rancagua project
Denmark:	Renewal of Danish Rail Infrastructure
Germany:	Framework contract and development partner of Deutsche Bahn
Finland:	Länsimetro project
Israel:	Ashkelon – Netivot line
Canada:	Toronto Transit Authority
Croatia:	Zagreb Central Station
Latvia:	Modernisation LZD-Infrastructure
Malaysia:	Thomson Line project
Morocco:	Casablanca – Tanger line
Mexico:	Metro Monterey
Norway:	LKAB Narvik-Kiruna project
Saudi Arabia:	North-South-Rail project, Mecca Metro
Switzerland:	Framework contract with SBB
Singapore:	Singapore Metro Subaqua Cable
Spain:	Vandellos-Tarragona line, Madrid – León – Burgos high speed Line
Turkey:	Ankara-Konya high speed line, Eskisehir – Balikesir line, Metro Istanbul, Metro Ankara
USA:	JFK Air Train, New York City Transit, Oakland Bay Area Rapid Transit

Prysmian Kabel und Systeme GmbH Alt Moabit 91D 10559 Berlin Germany T +49 (0) 30 3675 0 F +49 (0) 30 3675 40 www.prysmiangroup.com

© by Prysmian Kabel und Systeme GmbH 2016

Issue: September 2016

The preparation of text and illustration has been carried out with great care. Nevertheless mistakes can not be excluded. Do not scale the drawings. All photographs are the exclusive property of Prysmian Group.

Prysmian Group does not accept any liability for casual or consequential damage in connection with the use of this catalog. Improvement proposals and advices are to be sent to the above address.

All rights reserved. This document may not be copied in whole or in part, be reproduced, translated into another language or stored on electronic media.

Please note: Prysmian Group herewith warrants that the delivery items contained in this catalogue will be of the agreed nature and quality upon passing of the risk. Aforementioned nature of the delivered items shall be exclusively rated and measured by the sales and purchase agreements made in writing between Prysmian Group and the purchaser about nature and quality, properties and characteristic performance features of the respective delivery item. Illustrations and information contained in catalogues, price lists and other information material disclosed to the purchaser by Prysmian Group as well as any information describing the product shall be only legally binding, if expressly being referred to as binding information. Under no circumstances, such information shall be taken as guarantee for the special quality or nature of the delivery item. Such quality guarantees must be explicitly agreed upon in writing. Prysmian Group herewith reserves the right to modify the content of the catalog at any time.

Linking global expertise to the wheels of industry

Prysmian Kabel und Systeme GmbH Alt Moabit 91D 10559 Berlin, Germany E-Mail: kontakt@prysmiangroup.com

www.prysmiangroup.com www.prysmiangroup.de

